AP CALCULUS BC COURSE SYLLABUS

Textbook: Calculus for AP, 2nd Edition by R. Larson & P. Battaglia

Marking Period 1

Unit 1: Limits and Continuity (Test 1.2 - 1.6)

Section	Title	NJSLS	Problems
1.2	Finding Limits Graphically and Numerically	F-IF.C	Pg: 72 - 75
1.3	Evaluating Limits Analytically	A.SSE.B	Pg: 84 - 87
1.4	Continuity & One-Sided Limits	F.IF.C	Pg. 96-99
1.5	Infinite Limits	F.IF.C	Pg. 105-107
1.6	Limits at Infinity	F.IF.C	Pg. 115-117

Unit 2: Differentiation (Test 2.1 - 2.7 & 7.7)

Section	Title	NJSLS	Problems
2.1	The Derivative & Tangent Line Problem	A.SSE.B	Pg. 132-134
2.2	Basic Differentiation Rules & Rates of Change	A.SSE A.APR	Pg. 144-145
2.3	Product & Quotient Rules and Higher Order Derivatives	A.SSE A.APR	Pg. 155-158
2.4	Chain Rule	A.SSE A.APR	Pg. 169-173
2.5	Implicit Differentiation	A.SSE F.IF	Pg. 180-182
2.6	Derivatives of Inverse Functions	F.BF.B F.IF	Pg. 187-189
2.7	Related Rates	F.BF F.LE	Pg. 195-198
7.7	Indeterminate Forms & L'Hopital's Rule	A.SSE	Pg. 513-516

Section	Title	NJSLS	Problems
3.1	Extrema on an Interval	A.REI	Pg. 217-219
3.2	Rolle's & Mean Value Theorem	A.REI	Pg. 224-226
3.3	Increasing & Decreasing Functions and the 1st Derivative Test	A.CED.A	Pg. 233-236
3.4	Concavity & the 2nd Derivative Test	A.CED.A	Pg. 242-244
3.5	Summary of Curve Sketching	A.REI.D	Pg. 253-256
3.6	Optimization	A.REI.C	Pg. 262-266
3.7	Linear Approximation & Differentials	A.SSE F-BF	Pg. 272-273

Unit 3: Applications of Derivatives (Test 3.1 - 3.7)

Marking Period 2

Unit 4: Integration (Test 4.1 - 4.3, Test 4.6-4.8, 7.2-7.5)

Section	Title	NJSLS	Problems
4.1	Antiderivatives & Indefinite Integration	A.SSE	Pg. 287-289
4.2	Area Under a Curve	G.MG.A3	Pg. 299-301
4.3	Riemann Sums & Definite Integrals	A.SSE.B G.MG.A3	Pg. 312-315
4.6	Integration by Substitution	A.CED.A	Pg. 343-346
4.7	Natural Logarithm Function: Integration	F.LE.A	Pg. 353-355
4.8	Inverse Trigonometric Function: Integration	F.TF.B.7	Pg. 361-363
7.2	Integration by Parts	A.REI.A A.REI.C	Pg. 469-472
7.3	Trigonometric Integrals	F.TF.C	Pg. 479-481
7.4	Trigonometric Substitution	F.TF.C	Pg. 488-490
7.5	Partial Fractions (Linear Only)	A.APR.D.6	Pg. 498-499

Section	Title	NJSLS	Problems
4.4	Fundamental Theorem of Calculus	A.SSE.B G.MG.A3	Pg. 326-328
6.1	Area of a Region Between Two Curves	A.SSE.B G.MG.A3	Pg. 416-419
6.2	Volume: Washer & Disc Method	G.GMD.A3	Pg. 427-430
6.4	Arc Length & Surfaces of Revolution	G.GPE.B.7	Pg. 446-449

Unit 5: Applications of Integration (Test 6.1, 6.2, 6.4)

Unit 6: Differential Equations (Test 5.1 - 5.4)

Section	Title	NJSLS	Problems
5.1	Slope Fields and Euler's Method	S.ID.C	Pg. 375-378
5.2	Growth & Decay	F.IF.C.8b	Pg. 384-386
5.3	Separation of Variables	A.APR.D	Pg. 393-396
5.4	Logistic Equation	A.APR.D	Pg. 402-403

Marking Period 3

Unit 7: Parametric Equations, Polar Coordinates, & Vectors (Test 9.2,9.4 & 9.6, Test 9.3,9.5,9.7,9.8)

Section	Title	NJSLS	Problems
9.2	Plane Curves & Parametric Equations	A.REI.D	Pg: 652 - 654
9.4	Polar Coordinates & Polar Graphs	F.IF.C	Pg. 670 - 672
9.6	Vectors in the Plane	N.VM.B	Pg. 686 - 688
9.3	Parametric Equations & Calculus	A.SSE.B	Pg. 659 - 662
9.5	Area and Arc Length in Polar Coordinates	F.IF.C	Pg. 678 - 680
9.7	Vectored Value Functions	N.VM.A	Pg. 695 - 697
9.8	Velocity & Acceleration	N.VM.A.3	Pg. 702 - 703

Section	Title	NJSLS	Problems
8.1	Sequences	F.IF.A.3	Pg. 542 - 544
8.2	Series and Convergence	A.SSE.B4 F.IF.A.3	Pg. 552 - 554
8.3	Integral Test and P-Series	A.REI.A	Pg. 559 - 561
8.4	Comparison of Series	A.REI.D	Pg. 566 - 568
8.5	Alternating Series	A.REI.D	Pg. 575 - 576
8.6	The Ratio & Root Tests	A.REI.D	Pg. 583 - 585
8.7	Taylor Polynomials & Approximations	A.APR.C	Pg. 594 - 596
8.8	Power Series	A.REI.A A.APR.C	Pg. 604 - 606
8.9	Representation of Functions by Power Series	A.REI.A A.APR.C	Pg. 612 - 613
8.10	Taylor & MacLaurin Series	A.REI.A A.APR.C	Pg. 623 - 625

Unit 8: Infinite Series (Test 8.1 - 8.6 & 8.7 - 8.10)

Marking Period 4

Unit 9: AP Test Review (Test Mock AP Test)

Section	Title	NJSLS	Problems
Supplement	Units 1 - 8		AP Central FRQ & MCQ

Unit 10: Additional Topics (Test4.5 & 6.3)

Section	Title	NJSLS	Problems
4.5	The Net Change Theorem	A.SSE.B	Pg. 333 - 335
6.3	Shell Method	G.GMD.A3	Pg. 436 - 439

Unit 11: Project

Section	Title	NJSLS	Problems
Supplement	Marginal Analysis Project	A.CED.A	Activity Sheet

Course Description:

AP Calculus BC is representative of a college-level calculus course. Students cultivate their understanding of differential and integral calculus through engaging with real-world problems represented graphically, numerically, analytically, and verbally and using definitions and theorems to build arguments and justify conclusions as they explore concepts like change, limits, and the analysis of functions.

Course Expectations and Skills

• Students are required to have proficiency in all prerequisite topics for Calculus. Those who do not demonstrate proficiency will be required to seek additional help after school to close their achievement gap in order to be successful in this course.

- Students are to bring their Chrome Book charged and ready to use for the lesson.
- Students are encouraged to have a graphing calculator.
- Students are required to participate in both small and large group discussions and activities, as directed.

Resources

Text Book: Calculus for AP , 2nd Edition by R. Larson & P. Battaglia

Additional Resources:

- https://apcentral.collegeboard.org/
- https://sso.cengage.com/cb/
- WebAssign
- CalcChat.com
- CalcView.com
- Desmos.com

Grading Breakdown	
Major Summative (MAJ)	60%
Minor Formative (MIN)	30%
Homework (HW)	10%

Black Horse Pike Regional School District

Where inspiring excellence is our standard, and student achievement is the result. AP CALCULUS BC

034000

Updated: July 2023 PART I: UNIT RATIONALE <u>WHY</u> ARE STUDENTS LEARNING THIS CONTENT AND THESE SKILLS?

Unit Title: Limits and Continuity

In this unit students develop an understanding of limits as the foundational building blocks for both derivatives and integration. It is essential for discovering and developing important ideas, definitions, formulas and theorems in calculus. Students will solve limit problems graphically, algebraically, and conceptually. They will generate and work with tables, sketch and analyze various graphs, and apply numerous algebraic techniques to find limits of indeterminate forms. Students must have a solid, intuitive understanding of limits and be able to compute various limits, such as, one-sided limits, limits at infinity, infinite limits, and trigonometric limits. In addition, they will communicate both orally and in written form effectively what their answers mean in the context of the problems they are given. Finally, students will understand how limits are used to determine continuity, which is a fundamental property of functions, and apply the Intermediate Value Theorem.

	Essential Questions	Enduring Understandings	
approaches c? 2. What algebraic tech	how can you determine the limit of a function as x iniques can you use to evaluate a limit? ind how does it apply to the Intermediate Value	 Reasoning with definitions, theorems and properties can be used to justify claims about limits. Reasoning with definitions, theorems and properties can be used to justify claims about continuity. 	
High-frequ	Tier 2 Vocabulary uency words used throughout the unit	Tier 3 Vocabulary Discipline-specific words used throughout the unit	
 Function Continuity Infinite 	4. Asymptote 5. Removable Discontinuity	1. Limit	

PART II: INSTRUCTIONAL STRATEGIES AND RESOURCES DESCRIBE THE LEARNING TARGETS.

Unit Learning Targets/Goals/Outcomes				
Learning Target (Specific behavioral objectives that describe the skills students will learn)	<u>NJSLS:</u>	Mathematical Practices (see AP table the end of the document):		
 Estimate a limit using a numerical or graphical approach Evaluate a limit using properties of limits Determine Continuity at a point and continuity on an open interval Determine one-sided limits and continuity on a closed interval Determine Infinite limits from the left and the right Determine limits at infinity 	 HSF-IF.C HSA.SSE.B HSF-IF.C HSF-IF.C HSF-IF.C HSF-IF.C HSF-IF.C 	1. 2B 2. 1C, 1E, 2C, 3C 3. 1E, 3B, 3C, 3E 4. 3C 5. 1E, 3D 6. 2D		

Interdisciplinary Connections				
Real-world problem-solving examples	Learning Target	NJSLS		
Section: 1.2Page: 74Description: Cost analysis functions for paddleboard company	Estimate a limit using numerical or graphical approach	CLKS 9.1		
<i>Section: 1.3 Page: 86</i> <i>Description:</i> Comparing velocity and position functions to make predictions	Evaluate a limit using properties of limits	SCI.HS-PS2		
<i>Section: 1.4 Page: 91</i> <i>Description:</i> Using Charles's Law and absolute value to determine a lower limit	Determine one-sided limits and continuity on a closed interval.	SCI.HS-ESS3-5		

21st-Century Skills	Mathematical Practices
Critical thinking Creativity Collaboration Communication Information literacy Technology literacy Media literacy Flexibility Leadership Initiative Productivity Social skills	 Make sense of problems and persevere in solving them Reason abstractly and quantitatively Construct viable arguments and critique the reasoning of others Model with mathematics Use appropriate tools strategically Attend to precision Look for and make use of structure Look for and express regularity in repeated reasoning

Unit Resources:				
Textbook	Online Resources	Calculators		
Calculus for AP, 2nd Ed, Larson/Battaglia	https://apcentral.collegeboard.org https://sso.cengage.com/cb WebAssign CalcChat.com CalcView.com	TI-84 Plus TI-89 Desmos.com		

Students will write:
Students will define and compare/contrast given terms. Students will describe and write about a diagram using mathematical language. Students will relate real-world situations using geometry terminology. Students will also prove postulates and theorems
What the domain of a function is if given algebraically.What possible errors can be made by determining the domain of a function solely by analyzing a function's graph.The importance of examining a function analytically as well as graphically.A brief description of the meaning to the notation $\lim_{x \to c} f(x)$
Compare $f(x) = x$, $g(x) = sinx$, and $h(x) = \frac{sinx}{x}$ graphically and write why $\lim_{x \to 0} h(x) = 1$.
Compare $f(x) = x$, $g(x) = x$, and $h(x) = \frac{x}{x}$ graphically and write why $\lim_{x \to 0} h(x) = 0$.
About the importance of examining a function analytically as well as graphically when determining continuity. Descriptions about how functions differ. Meanings of different types of discontinuity and explain why. Explanations as to why the intermediate value theorem applies on a given closed interval.

PART III: TRANSFER OF KNOWLEDGE AND SKILLS

DESCRIBE THE LEARNING EXPERIENCE.

How will students uncover content and build skills?

1.2 - Finding Limits Graphically and Numerically				
Specific Learning Objective	Warm-Up/Starting Options	Practice & Apply		
 Represent limits analytically using correct notation Interpret limits expressed ns in analytic notation Estimate limits of functions 	Determine the Vertical Asymptotes for the given functions	Larson Text Section: 1.2 Pg: 72 - 75		

	1.3 - Evaluating Limits Analytically					
	Specific Learning Objective	Warm-Up/Starting Options		Practice & Apply		
•	Determine the limits of functions using limit theorems Determine the limits of functions using equivalent expressions for the function or the squeeze theorem.	Interpret the given limit and estimate its value	Larson Text	Section: 1.3 Pg: 84 - 87		

	1.4 - Continuity and One-Sided Limits					
	Specific Learning Objective	Warm-Up/Starting Options	Practice & Apply			
•	Justify conclusions about continuity at a point using the definition Determine intervals over which a function is continuous Determine values of x or solve for parameters that make discontinuous functions continuous, if possible Explain the behavior of a function on an interval using the IVT	Determine the value of the given limit and verify graphically using calculator	Larson Text	Section: 1.4 Pg: 9	16 - 99	

1.5 - Infinite Limits				
Specific Learning Objective	Warm-Up/Starting Options		Practice & Apply	
Interpret the behavior of functions using limits involving infinity	Define asymptote. What is a function's value at an asymptote? Explain.	Larson Text	Section: 1.5 Pg: 105 - 107	

1.6 - Limits at Infinity				
Specific Learning Objective	Warm-Up/Starting Options		Practice & Apply	
Interpret the behavior of functions using limits involving infinity	In your own words, describe the meaning of an infinite limit. Is infinity a real number?	Larson Text	Section: 1.6 Pg: 115 - 117	

PART IV: EVIDENCE OF LEARNING

IDENTIFY THE METHODS BY WHICH STUDENTS WILL DEMONSTRATE THEIR UNDERSTANDING OF CONTENT AND THEIR ABILITY TO APPLY SKILLS.

Assessments				
Summative	Formative	Performance		
The following assessments will be used to evaluate student learning, skill acquisition and academic achievement of the Standards of Mathematical Practice and the New Jersey Learning Standards for Mathematics listed under each chapter in the Algebra 1 curriculum/syllabus at the conclusion of an instructional time period. Diagnostic Pre-Test Chapter Tests Projects End-Of –Course Assessment	The effectiveness of the instructional program will be based on numerous activities and strategies including the following: teacher observations, students collaborating with peers, questioning strategies, student record-keeping, quizzes, exit/admit assignments, peer/self-assessments, learning/response logs, discussions and practice presentations.	 The following assessments require students to utilize various strands of mathematics. Projects Practice AP Exam Questions Homework Classwork 		
List of Accommodations and Modifications Special Education 504 Students At Risk Students ELL Gifted and Talented 				

State Mandates and Resources

- <u>New Jersey Student Learning Standards</u>
- Career Readiness, Life Literacies, and Key Skills
- LGBT and Disabilities Law
- Asian and Pacific Islander

AP CALCULUS AB AND BC

8 **Mathematical Practices**

Practice 1	Practice 2	Practice 3	Practice 4
Implementing Mathematical Processes 1 Determine expressions and values using mathematical procedures and rules.	Connecting Representations Translate mathematical information from a single representation or across multiple representations.	Justification Justify reasoning and solutions.	Communication and Notation • Use correct notation, language, and mathematical conventions to communicate results or solutions.
- SKILLS			
1.A Identify the question to be answered or problem to	Identify common underlying structures in	3.A Apply technology to develop claims and	4.4 Use precise mathematical language.

1.8 Identify key and relevant information to answer a question or solve a problem (not assessed).

be solved (not assessed).

1.6 Identify an appropriate mathematical rule or procedure based on the classification of a given expression (e.g., Use the chain rule to find the derivative of a composite function).

1.0 Identify an appropriate mathematical rule or procedure based on the relationship between concepts (e.g., rate of change and accumulation) or processes (e.g., differentiation and its inverse process, anti-differentiation) to solve problems.

1.E Apply appropriate mathematical rules or procedures, with and without technology.

Explain how an approximated value relates to the actual value.

problems involving different contextual situations.

2.8 Identify mathematical information from graphical, numerical, analytical, and/or verbal representations.

2.c Identify a re-expression of mathematical information presented in a given representation.

2.D Identify how mathematical characteristics or properties of functions are related in different representations.

2.E Describe the relationships among different representations of functions and their derivatives.

conjectures (not assessed).

3.B Identify an appropriate mathematical definition, theorem, or test to apply.

s.c Confirm whether hypotheses or conditions of a selected definition, theorem, or test have been satisfied.

3.D Apply an appropriate mathematical definition, theorem, or test.

3.E Provide reasons or rationales for solutions and conclusions.

3.F Explain the meaning of mathematical solutions in context.

3.0 Confirm that solutions are accurate and appropriate.

4.8 Use appropriate units of measure.

4.C Use appropriate mathematical symbols and notation (e.g., Represent a derivative using f'(x), y', and dy).

4.D Use appropriate graphing techniques.

4.E Apply appropriate rounding procedures.

Black Horse Pike Regional School District

Where inspiring excellence is our standard, and student achievement is the result.

AP CALCULUS BC 034000

Updated: July 2023

PART I: UNIT RATIONALE

WHY ARE STUDENTS LEARNING THIS CONTENT AND THESE SKILLS?

Unit Title: Differentiation

In this unit students will get into the heart of calculus. Derivatives are a major portion of the course, so they will spend a significant amount of time in this unit. Derivatives are used to describe the rate of change of one variable with respect to another to understand change in a variety of contexts. At first students build the derivative using the concept of limits and use it to progamily compute the instantaneous rate of change of a function. Students should be able to use different definitions of derivatives, estimate derivatives from tables and graphs, and apply various derivative rules and properties. As they progress through this unity they will spend some time on the relationship between position, velocity, and acceleration on problems involving projectile motion and rectilinear motion.

Essential Questions	Enduring Understandings		
 What is a derivative and what is the relationship of continuity? How do you find the derivatives of basic algebraic functions, trigonometric functions, and exponential functions? How do you find the derivatives of functions involving products and quotients? How do you find the derivatives of composite functions, natural logarithmic functions, and exponential functions with bases other than e? How do you find the derivatives of inverse functions, including inverse trigonometric functions? What is a related rate and how do you find it? 	 Determine average rates of change using difference of quotients Represent the derivative as a limit of a difference quotient Calculate and interpret equations of tangent lines to a curve Calculate derivatives and higher order derivative for familiar functions and composite functions Calculate and interpret derivatives of implicitly defined functions Calculate and interpret related rates in applied contexts Determine limits of functions utilizing L'Hopital's Rule. 		

Tier 2 Vocabulary High-frequency words used throughout the unit		Tier 3 Vocabulary Discipline-specific words used throughout the unit			
 Limit Continuity Tangent 	4. Secant 5. Linear Equation 6. Function	 Derivative Difference Quotient Related Rate 			

PART II: INSTRUCTIONAL STRATEGIES AND RESOURCES DESCRIBE THE LEARNING TARGETS.

Unit Learning Targets/Goals/Outcomes						
Learning Target (Specific behavioral objectives that describe the skills students will learn)	<u>NJSLS:</u>	Mathematical Practices (see AP table the end of the document):				
 Find the slope of the tangent line to a curve at a point Use derivatives to find Rates of change Find derivatives using the Product and Quotient rules Find derivatives using the Chain Rule Use implicit differentiation to find the derivative of an implicit function Find the derivative of an inverse function Find and utilize a a related rate to solve real-life problems Apply L'Hopital's Rule to evaluate a limit 	 HSA.SSE.B HSA.SSE HSA.APR HSA.APR HSF.IF HSF.IF HSF.LE HSA.SSE 	 1. D, 2.B, 4.C 1.E, 3.E 2.8 1.C 1.E 1.8 1.6 1.3, 3.G 1.C, 1.E, 3.F 1.C, 3.D 				

Interdisciplinary Connections				
Real-world problem-solving examples	Learning Target	NJSLS		
Section: 2.1 Page: 124 Description: Tangent Line Problem - Optics and Refraction	Find the slope of the tangent line to a curve at a point	HS-PS4-4		
Section: 2.3 Page: 157 Description: Particle Motion	Find derivatives using the Product and Quotient Rules	HS-PS2-1		
Section: 7.7 Page: 515 Description: Electric Circuit Diagram	Apply L'Hopital's Rule to evaluate a limit	HS-PS1-3		

21st-Century Skills	Mathematical Practices
Critical thinking Creativity Collaboration Communication Information literacy Technology literacy Media literacy Flexibility Leadership Initiative Productivity Social skills	 Make sense of problems and persevere in solving them Reason abstractly and quantitatively Construct viable arguments and critique the reasoning of others Model with mathematics Use appropriate tools strategically Attend to precision Look for and make use of structure Look for and express regularity in repeated reasoning

Unit Resources:				
Textbook	Online Resources	Calculators		
Calculus for AP, 2nd Ed, Larson/Battaglia	https://apcentral.collegeboard.org https://sso.cengage.com/cb WebAssign CalcChat.com CalcView.com	TI-84 Plus TI-89 Desmos.com		

Students will write:				
Students will define and compare/contrast given terms. Students will describe and write about a diagram using mathematical language. Students will relate real-world situations using geometry terminology. Students will also prove postulates and theorems				
Descriptions of the geometric significance of differentiability of two functions. The meaning of $f'(1.4)$ given $N=f(p)$ is the function that yields the number of gallons of gasoline sold by a station at a price of dollars/gal The criteria used in selecting a graph as f and f' when given two graphs. Justifications as to why or why not a function has a tangent line at a given point. The criteria for a function to have a horizontal tangent present. Connections to differentiability and continuity. Appropriate units with all answers that model real world situations – On the AP exam students may not earn a point on a free-response question when units are not included with the solution. Explanations how the velocity of an object can be determined given a graph of its position. Describe the difference between the explicit form of a function and an implicit equation. The difference between a negative rate of change and a positive rate of change. Explain if x changes at a constant rate, does y change at a constant rate and if so is it the same as x. Explain and justify their approach for solving related-rate problems.				

PART III: TRANSFER OF KNOWLEDGE AND SKILLS

DESCRIBE THE LEARNING EXPERIENCE.

How will students uncover content and build skills?

2.1 - The Derivative and The Tangent Line Problem					
Specific Learning Objective	Warm-Up/Starting Options		Practice & Ap	oply	
 Find the slope of the tangent line to a curve at a point Use the limit definition to find the derivative of a function Understand the relationship between differentiability & continuity Find the derivative of a function given by a table or a graph 	Find the slope of the given secant line. Can you find slope with only 1 point?	Larson Text	Section: 2.1	Pg: 132-134	

	2.2 - Basic Differentiation Rules and Rates of Change					
	Specific Learning Objective	Warm-Up/Starting Options	Practice & Apply			
•	Find the derivative of a function using various Differentiation techniques Find the derivative of trigonometric functions Find the derivative of exponential functions Use derivatives to find rates of change	Solve the following using first principles.	Larson Text	Section: 2.2	Pg: 144-147	

	2.3 - Product & Quotient, Trigonometric, and Higher-Oder Derivatives					
	Specific Learning Objective	Warm-Up/Starting Options	Practice & Apply			
•	Find the derivative of a function using the Product Rule Find the derivative of a function using the QUotient Rule Find the derivative of a trigonometric function Find a higher-order derivative of a function	Find the equation of the tangent line	Larson Text	Section: 2.3	Pg: 155-158	

2.4 - The Chain Rule and Exponential Functions					
Specific Learning Objective	Warm-Up/Starting Options	Practice & Apply		pply	
 Find the derivative of a composite function using the Chain Rule Find the derivative of a function using the General Power Rule Simplify the derivative of a function using algebra Find the derivative of a transcendental function using the Chain Rule Find the derivative of a function involving the natural logarithmic function Define and differentiate exponential functions that have bases other than e. 		Larson Text	Section: 2.4	Pg: 169-173	

	2.5 - Implicit Differentiation and Logarithmic Differentiation						
	Specific Learning Objective	Warm-Up/Starting Options	Practice & Apply				
•	Distinguish between functions written in implicit form and explicit form Use implicit differentiation to find the derivative of a function Find derivatives of functions using logarithmic differentiation	Determine f'(x) of the given functions	Larson Text	Section: 2.5	Pg: 180-182		

	2.6 - Derivatives of Inverse Functions					
	Specific Learning Objective	Warm-Up/Starting Options	Practice & Apply			
•	Find the derivative of an inverse function Differentiate an inverse trigonometric function	Solve for dy/dx. (use implicit differentiation)	Larson Text	Section: 2.6	Pg: 187-189	

	2.7 - Related Rates					
	Specific Learning Objective	Warm-Up/Starting Options		Practice & Ap	oply	
•	Find a Related Rate Use related rates to solve real-life problems	Determine if A, B, C, or D is the solution to the given problems (MC AP Practice)	Larson Text	Section: 2.7	Pg: 195-198	

	7.7 - Indeterminate Forms and L'Hopital's Rule					
	Specific Learning Objective	Warm-Up/Starting Options	Practice & Apply			
•	Recognize Limits that produce indeterminate forms Apply L'Hopital's Rule to evaluate a limit	Solve the given limit using an algebraic approach	Larson Text	Section: 7.7	Pg: 513-516	

PART IV: EVIDENCE OF LEARNING IDENTIFY THE METHODS BY WHICH STUDENTS WILL DEMONSTRATE THEIR UNDERSTANDING OF CONTENT AND THEIR ABILITY TO APPLY SKILLS.

Assessments					
Summative	Formative	Performance			
The following assessments will be used to evaluate student learning, skill acquisition and academic achievement of the Standards of Mathematical Practice and the New Jersey Learning Standards for Mathematics listed under each chapter in the Algebra 1 curriculum/syllabus at the conclusion of an instructional time period. Diagnostic Pre-Test Chapter Tests Projects End-Of –Course Assessment	The effectiveness of the instructional program will be based on numerous activities and strategies including the following: teacher observations, students collaborating with peers, questioning strategies, student record-keeping, quizzes, exit/admit assignments, peer/self-assessments, learning/response logs, discussions and practice presentations.	 The following assessments require students to utilize various strands of mathematics. Projects Practice AP Exam Questions Homework Classwork 			
List of Accommodations and Modifications Special Education 504 Students At Risk Students ELL Gifted and Talented 					

State Mandates and Resources

- <u>New Jersey Student Learning Standards</u>
- <u>Career Readiness, Life Literacies, and Key Skills</u>
- LGBT and Disabilities Law
- Asian and Pacific Islander

AP CALCULUS AB AND BC 8 Mathematical Practices

Practice 1 Practice 2 Practice 3 Practice 4 Implementing Justification Connectina Communication Mathematical Representations 2 and Notation Justify reasoning and solutions. Processes 1 Translate mathematical information Use correct notation, language, from a single representation or across and mathematical conventions to Determine expressions and values multiple representations. communicate results or solutions. using mathematical procedures and rules. SKILLS 1.A Identify the question to 2.A Identify common 3.A Apply technology 4.A Use precise be answered or problem to underlying structures in to develop claims and mathematical language.

1.8 Identify key and relevant information to answer a guestion or solve a problem (not assessed).

be solved (not assessed).

1.6 Identify an appropriate mathematical rule or procedure based on the classification of a given expression (e.g., Use the chain rule to find the derivative of a composite function).

1.D Identify an appropriate mathematical rule or procedure based on the relationship between concepts (e.g., rate of change and accumulation) or processes (e.g., differentiation and its inverse process, anti-differentiation) to solve problems.

1.E Apply appropriate mathematical rules or procedures, with and without technology.

Explain how an approximated value relates to the actual value.

contextual situations. 2.8 Identify mathematical information from graphical, numerical, analytical, and/or

verbal representations.

problems involving different

2.c Identify a re-expression of mathematical information presented in a given representation.

2.D Identify how mathematical characteristics or properties of functions are related in different representations.

2.E Describe the relationships among different representations of functions and their derivatives.

conjectures (not assessed).

3.8 Identify an appropriate mathematical definition. theorem, or test to apply.

S.C. Confirm whether hypotheses or conditions of a selected definition, theorem, or test have been satisfied.

3.D Apply an appropriate mathematical definition, theorem, or test.

3.E Provide reasons or rationales for solutions and conclusions.

3.F Explain the meaning of mathematical solutions in context.

3.6 Confirm that solutions are accurate and appropriate.

4.8 Use appropriate units of measure.

4.C Use appropriate mathematical symbols and notation (e.g., Represent a derivative using f'(x), y', and $\frac{dy}{dx}$).

4.D Use appropriate graphing techniques.

rounding procedures.

4.E Apply appropriate

Black Horse Pike Regional School District

Where inspiring excellence is our standard, and student achievement is the result.

AP CALCULUS BC 034000

Updated: July 2023

PART I: UNIT RATIONALE

WHY ARE STUDENTS LEARNING THIS CONTENT AND THESE SKILLS?

Unit Title: Applications of Differentiation

In this unit, students will go on to understand and apply the Mean Value Theorem and will have the opportunity to see how the average rate of change can be used to justify instantaneous speed. They will also spend a significant amount of time developing a comprehensive analysis of functions using not only their graphs but their derivatives as well. Students should be familiar with a variety of real-world applications, including related rates, optimization, linear approximation, and growth and decay models. This is most likely the first time students will be asked to think deeply on a conceptual level, so they may struggle to make connections at first. Students will also learn how far to simplify solutions and provide meaningful simplifications to clarify solutions.

Essential Questions	Enduring Understandings
 What are extrema and how can you find them on open and closed intervals? What is the Mean Value Theorem and how is it used? How can you determine the intervals on which a function is increasing or decreasing and the location of the function's relative extrema? How do you determine the concavity of a function and find its inflection points? How do you analyze a function and sketch its graph? How do you maximize or minimize quantities? How are differentials used to explain the tangent line approximation? 	 Justify conclusions about functions by applying the Extreme Value Theorem Justify conclusions about the behavior of a function based on the behavior of its derivatives Determine critical points of implicit relations Justify conclusions about the behavior of a function based on the behavior of its derivatives Calculate minimum and maximum values in applied contexts or analysis of functions Interpret minimum and maximum values calculated in applied contexts Approximate a value on a curve using the equation of a tangent line

High-freque	Tier 2 Vocabulary ency words used throughout the unit	Discipline	Tier 3 Vocabulary <i>e-specific words used throughout the unit</i>
 Limit Continuity Derivative 	4. Interval 5. Increase/Decrease	 Concavity MVT Rolle's Theorem 	4. Extrema 5. Inflection Point

PART II: INSTRUCTIONAL STRATEGIES AND RESOURCES DESCRIBE THE LEARNING TARGETS.

Unit Learning Targets/Goals/Outcomes						
Learning Target (Specific behavioral objectives that describe the skills students will learn)		behavioral objectives that describe the skills students will		Mat	Mathematical Practices (see AP table the end of the document):	
1. Understand the det open and closed in	inition of extrema of a function on an rerval	1.	HSA.REI	1.	3.E	
2. Understand both R	olle's and the Mean Value Theorems.	2.	HSA.REI	2.	3.E	
 Determine intervals decreasing 	s on which a function is increasing or	3.	HSA.CED.A	3.	2.E, 3.D	
 Determine intervals down 	s on which a function is concave up or	4.	HSA.CED.A	4.	2.E, 3.D	
5. Analyze and sketch	the graph of a function	5.	HSA.REI.D	5.	2.D	
6. Solve applied minir	num and maximum problems.	6.	HSA.REI.C	6.	1.E, 3.E, 3.F	
7. Understand the cor	ncept of a tangent line approximation	7.	HSA.SSE, HSF-BF	7.	3.E	

Interdisciplinary Connections						
Real-world problem-solving examples	Learning Target	NJSLS				
Section: 3.2 Page: 223 Description: Finding instantaneous rate of change of cars	Understand both Rolle's and the Mean Value Theorems.	HS-PS2-1				
Section: 3.4 Page: 243 Description: Highway design - Engineering	Determine intervals of which a function is concave up or down	HS-PS1-3				
Section: 3.6 Page: 262 Description: Farming plots	Solve applied minimum and maximum problems	HS-ESS3-4				

21st-Century Skills	Mathematical Practices
Critical thinking Creativity Collaboration Communication Information literacy Technology literacy Media literacy Flexibility Leadership Initiative Productivity Social skills	 Make sense of problems and persevere in solving them Reason abstractly and quantitatively Construct viable arguments and critique the reasoning of others Model with mathematics Use appropriate tools strategically Attend to precision Look for and make use of structure Look for and express regularity in repeated reasoning

Unit Resources:							
Textbook	Online Resources	Calculators					
Calculus for AP, 2nd Ed, Larson/Battaglia	https://apcentral.collegeboard.org https://sso.cengage.com/cb WebAssign CalcChat.com CalcView.com	TI-84 Plus TI-89 Desmos.com					

Students will write:
Students will define and compare/contrast given terms. Students will describe and write about a diagram using mathematical language. Students will relate real-world situations using geometry terminology. Students will also prove postulates and theorems
How derivatives can be used to approximate the zero of a function. The difference between relative and absolute extrema.
The graph of a function on a closed interval given extrema locations.
Explain why or why not the Mean Value Theorem applies to a function on a closed interval.
Explain how the Mean Value Theorem and Rolle's theorem are similar and different.
How you can determine the intervals on which a function is increasing or decreasing.
How you can determine the location of a function's relative extrema using derivatives.
How to determine the concavity of a function using derivatives.
How can derivatives be used to sketch the graph of a function precisely?
Justify the possibility of a function crossing its horizontal or vertical asymptotes.
To explain since the surface area of a bottle does not change when squeezed, how does the volume change? Justify how to maximize or minimize quantities
and apply appropriate units.

PART III: TRANSFER OF KNOWLEDGE AND SKILLS

DESCRIBE THE LEARNING EXPERIENCE.

How will students uncover content and build skills?

3.1 - Extrema on an Interval					
Specific Learning Objective	Warm-Up/Starting Options		Practice & Appl	y	
 Understand the definition of extrema of a function on an interval Understand the definition of relative extrema of a function on an open interval Find extrema on a closed interval 	Find the coordinate of the vertices for the given function	Larson Text	Section: 3.1	Pg: 217-219	

3.2 - Rolle's Theorem and the Mean Value Theorem					
Specific Learning Objective	Warm-Up/Starting Options		Practice & Apply	1	
 Understand and use Rolle's Theorem Understand and use the Mean Value Theorem 	Determine the max or min value of the function and determine if its a local or extrema	Larson Text	Section: 3.2	Pg: 224-226	

3.3 - Increasing and Decreasing Functions and the First Derivative Test						
Specific Learning Objective	Warm-Up/Starting Options		Practice & Apply	/		
 Determine intervals on which a function is increasing or decreasing Apply the First Derivative Test to find relative extrema of a function 	Use the MVT to verify that an extrema point exists on the given interval	Larson Text	Section: 3.3	Pg: 233-236		

3.4 - Concavity and the Second Derivative Test						
Specific Learning Objective	Warm-Up/Starting Options		Practice & Ap	ply		
 Determine intervals on which a function is concave upward or concave downward. Find any points of inflection of the graph of a function Apply the Second Derivative Test to find relative extrema of a function 	Determine if the function is increasing or decreasing on the given interval. Verify by graphical analysis.	Larson Text	Section: 3.4	Pg: 242-244		

3.5 - A Summary of Curve Sketching				
Specific Learning Objective	Warm-Up/Starting Options		Practice & Apply	/
• Analyze and Sketch the graph of a function	What is concavity? Determine the intervals of concavity for the given graph.	Larson Text	Section: 3.5	Pg: 253-256

3.6 - Optimization Problems					
Specific Learning Objective	Warm-Up/Starting Options		Practice & Apply	/	
 Solve applied minimum and maximum problems. 	Determine the intervals of increase and decrease and concavity given the following family of curve sketches.	Larson Text	Section: 3.6	Pg: 262-265	

3.7 - Linear Approximation and Differentials					
Specific Learning Objective	Warm-Up/Starting Options		Practice & Apply	1	
 Understand the concept of tangent line approximation Compare the value of the differential, dy, with the actual change in y, delta y Estimate a propagated error using a differential Find the differential of a function using differentiation formulas. 	Various optimization problems.	Larson Text	Section: 3.7	Pg: 272-275	

PART IV: EVIDENCE OF LEARNING

IDENTIFY THE METHODS BY WHICH STUDENTS WILL DEMONSTRATE THEIR UNDERSTANDING OF CONTENT AND THEIR ABILITY TO APPLY SKILLS.

Assessments					
Summative	Formative	Performance			
The following assessments will be used to evaluate student learning, skill acquisition and academic achievement of the Standards of Mathematical Practice and the New Jersey Learning Standards for Mathematics listed under each chapter in the Algebra 1 curriculum/syllabus at the conclusion of an instructional time period. Diagnostic Pre-Test Chapter Tests Projects End-Of –Course Assessment 	The effectiveness of the instructional program will be based on numerous activities and strategies including the following: teacher observations, students collaborating with peers, questioning strategies, student record-keeping, quizzes, exit/admit assignments, peer/self-assessments, learning/response logs, discussions and practice presentations.	 The following assessments require students to utilize various strands of mathematics. Projects Practice AP Exam Questions Homework Classwork 			

List of Accommodations and Modifications

- Special Education
- <u>504 Students</u>
- <u>At Risk Students</u>
- <u>ELL</u>
- Gifted and Talented

State Mandates and Resources

- <u>New Jersey Student Learning Standards</u>
- Career Readiness, Life Literacies, and Key Skills
- LGBT and Disabilities Law
- Asian and Pacific Islander

AP CALCULUS AB AND BC

8 **Mathematical Practices**

Practice 1	Practice 2	Practice 3	Practice 4
Implementing Mathematical Processes 1 Determine expressions and values using mathematical procedures and rules.	Connecting Representations Translate mathematical information from a single representation or across multiple representations.	Justification Justify reasoning and solutions.	Communication and Notation • Use correct notation, language, and mathematical conventions to communicate results or solutions.
- SKILLS			
1.A Identify the question to be answered or problem to	Identify common underlying structures in	3.A Apply technology to develop claims and	4.4 Use precise mathematical language.

1.8 Identify key and relevant information to answer a question or solve a problem (not assessed).

be solved (not assessed).

1.6 Identify an appropriate mathematical rule or procedure based on the classification of a given expression (e.g., Use the chain rule to find the derivative of a composite function).

1.0 Identify an appropriate mathematical rule or procedure based on the relationship between concepts (e.g., rate of change and accumulation) or processes (e.g., differentiation and its inverse process, anti-differentiation) to solve problems.

1.E Apply appropriate mathematical rules or procedures, with and without technology.

Explain how an approximated value relates to the actual value.

problems involving different contextual situations.

2.8 Identify mathematical information from graphical, numerical, analytical, and/or verbal representations.

2.c Identify a re-expression of mathematical information presented in a given representation.

2.D Identify how mathematical characteristics or properties of functions are related in different representations.

2.E Describe the relationships among different representations of functions and their derivatives.

conjectures (not assessed).

3.B Identify an appropriate mathematical definition, theorem, or test to apply.

s.c Confirm whether hypotheses or conditions of a selected definition, theorem, or test have been satisfied.

3.D Apply an appropriate mathematical definition, theorem, or test.

3.E Provide reasons or rationales for solutions and conclusions.

3.F Explain the meaning of mathematical solutions in context.

3.0 Confirm that solutions are accurate and appropriate.

4.8 Use appropriate units of measure.

4.C Use appropriate mathematical symbols and notation (e.g., Represent a derivative using f'(x), y', and dy).

4.D Use appropriate graphing techniques.

4.E Apply appropriate rounding procedures.

Black Horse Pike Regional School District

Where inspiring excellence is our standard, and student achievement is the result.

AP CALCULUS BC 034000

Updated: July 2023

PART I: UNIT RATIONALE

WHY ARE STUDENTS LEARNING THIS CONTENT AND THESE SKILLS?

Unit 4: In	itegration
In this unit, students will establish the relationship between differentiation and certain regions bounded by rate functions. Integration determines the accumula instantaneous rate of change at a point. Students will understand that integratio differentiation is a limiting case of a quotient of differences (slopes).	ation of change over an interval, just as differentiation determines
Essential Questions	Enduring Understandings
 What are antiderivatives and how are they used? How can you approximate the area of a plane region? How are Reimann sums similar to the Trapezoidal Rule and how are they different? How do you integrate composite functions? How do you integrate rational functions and trigonometric functions other than sine and cosine? What is integration by parts and when is it used? How do you evaluate trigonometric integrals involving powers? How can trigonometric substitution be used to solve an integral? How do you integrate a complex rational function? 	 Definite integrals allow us to solve problems involving the accumulation of change over an interval. Definite integrals can be approximated using geometric and numerical methods. Recognizing opportunities to apply knowledge of geometry and mathematical rules can simplify integration. The use of limits allows us to show that the areas of unbounded regions may be finite.

	Tier 2 Vocabulary High-frequency words used throughout the unit		Tier 3 Vocabulary Discipline-specific words used throughout the unit		
Derivative	Limits/Continuity	Area	Antiderivatives Riemann Sum	Integration Sigma Notation	Partial Fractions Integration by Parts

PART II: INSTRUCTIONAL STRATEGIES AND RESOURCES DESCRIBE THE LEARNING TARGETS.

	Learning Target (Specific behavioral objectives that describe the skills students will learn)	NJSLS:	Mathematical Practices (see AP table the end of th document):
1.	Write the general solution of a differential equation and use indefinite integral notation for antiderivatives.	1. HSA.SSE	1. 4B
2.	Approximate the area of a plane region and find the area of a plane region using limits.	2. HSG.MG.A3	2. 1F
3.	Understand the definition of a Riemann Sum.	3. HSA.SSE.B, HSG.MG.A3	3. 1F
4.	Evaluate a definite integral using limits, geometric formulas and properties.	4. HSA.SSE.B, HSG.MG.A3	4. 1F
5.	Use pattern recognition, a change of variables and the General Power Rule to find indefinite integrals.	5. HSA.CED.A	5. 1E, 4C
6.	Use the Log Rule to integrate rational functions and integrate trigonometric functions.	6. HSF.LE.A	6. 4C
7.	Integrate functions whose antiderivatives involve inverse trigonometric functions.	7. HSF.TF.B.7	7. 1E
8.	Find the antiderivative using integration by parts.	8. HSA.REI.A, .C	8. 1E
9.	Solve trigonometric integrals involving powers of sine, cosine, secant and tangent.	9. HSF.TF.C	9. 1E
10.	Use trigonometric substitution to find an integral.	10. HSF.TF.C	10. 1E
	Understand and use the concept of partial fraction decomposition to integrate rational functions.	11. HSA.APR.D6	11. 1E

Interdisciplinary Connections				
Real-world problem-solving examples	Learning Target	NJSLS		
Section: 4.1 Page: 288 Description: Time-distance of Grand Canyon	Write the general solution of a differential equation	SCI.HS.ESS3		
Section: 4.7 Page: 355 Description: Heat Transfers (Newton's Cooling Law)	Use the Log Rule to integrate rational functions and integrate trigonometric functions.	SCI.HS.ESS1		
Section: 7.5 Page: 499 Description: Chemical Reaction	Understand and use the concept of partial fraction decomposition to integrate rational functions.	SCI.HS.PS1		

The following 21st-century skills and the 8 mathematical practices are embedded throughout the course and are evident in daily lessons, assignments, activities, assessments, and projects:			
21st-Century Skills	Mathematical Practices		
 Critical thinking Creativity Collaboration Communication Information literacy Technology literacy Media literacy Flexibility Leadership Initiative Productivity Social skills 	 Make sense of problems and persevere in solving them Reason abstractly and quantitatively Construct viable arguments and critique the reasoning of others Model with mathematics Use appropriate tools strategically Attend to precision Look for and make use of structure Look for and express regularity in repeated reasoning 		

Unit Resources:				
Textbook	Online Resources	Calculators		
Calculus for AP, 2nd Ed, Larson/Battaglia	https://apcentral.collegeboard.org https://sso.cengage.com/cb WebAssign CalcChat.com CalcView.com	TI-84 Plus TI-89 Desmos.com		

Students will write:

Students will define and compare/contrast given terms. Students will describe and write about a diagram using mathematical language. Students will relate real-world situations using geometry terminology. Students will also prove postulates and theorems

- Explain the difference, as you understand it so far, between definite integral and indefinite integral.
- The difference between a differential and a derivative.
- The difference between Mean Value Theorem and the Intermediate Value Theorem.
- What are the different types of Riemann sums?

- What evidence can you think of to show that Riemann sums really do get to the value of a definite integral found by the fundamental theorem as n approaches infinity?

PART III: TRANSFER OF KNOWLEDGE AND SKILLS

DESCRIBE THE LEARNING EXPERIENCE

How will students uncover content and build skills?

4.1 Antiderivatives and Indefinite Integration				
Specific Learning Objective	Warm-Up/Starting Options		Practice & Ap	oply
 Write the general solution of a differential equation and use indefinite integral notation for antiderivatives. Use basic integration rules to find antiderivatives. Find a particular solution of a differential equation. 	Determine the dy/dx for 2-3 functions. Describe the process using words.	Larsen Text	Section: 4.1	Pg: 287-289

4.2 Area			
Specific Learning Objective	Warm-Up/Starting Options	Practice & Apply	
 -Use sigma notation to write and evaluate a sum. -Understand the concept of area. -Approximate the area of a plane region. -Find the area of a plane region using limits. 	Find the sum of the numbers from 1 to 100.	Larsen Text Section: 4.2 Pg: 299-301	

4.3 Riemann Sums and Definite Integrals				
Specific Learning Objective	Warm-Up/Starting Options		Practice & A	pply
-Understand the definition of a Riemann sum. -Evaluate a definite integral using limits and geometric formulas. -Evaluate a definite integral using properties of definite integrals. -Approximate a definite integral using the Trapezoidal Rule.	Given a basic definite integral, have students explain what it represents.	Larsen Text	Section: 4.3	Pg: 312-315

4.6 Integration by Substitution				
Specific Learning Objective	Warm-Up/Starting Options		Practice & /	Apply
 -Use pattern recognition to find a definite integral. -Use a change of variable to find an indefinite integral. -Use the General Power Rule for Integration to find an indefinite integral. -Use a change of variables to evaluate a definite integral. -Evaluate a definite integral involving an even or odd function. 	Solve an integral with trigonometric functions.	Larsen Text	Section: 4.6	Pg: 343-346

4.7 Natural Log Function Integration				
Specific Learning Objective	Warm-Up/Starting Options	Practice & Apply		
-Use the Log Rule for Integration to integrate a rational function. -Integrate trigonometric functions.	Error analysis problem in Larsen text on pg. 344 #82.	Larsen Text Section: 4.7 Pg: 353-355		

7.2 Integration by Parts				
Specific Learning Objective	Warm-Up/Starting Options		Practice &	Apply
-Find an antiderivative using integration by parts.	Write down the integration by parts formula. Write down at least two things you notice. Talk with a partner about what you notice.	Larsen Text	Section: 7.2	Pg: 469-472

7.3 Trigonometric Integrals				
Specific Learning Objective	Warm-Up/Starting Options		Practice & A	Apply
-Solve trigonometric integrals involving powers of sine, cosine, secant and tangent. -Solve trigonometric integrals involving sines and cosines of different angles.	Write down the Pythagorean trigonometric identities.	Larsen Text	Section: 7.3	Pg: 479-481

7.4 Trigonometric Substitutions				
Specific Learning Objective	Warm-Up/Starting Options		Practice & Ap	oply
-Use trigonometric substitution to find an integral. -Use integrals to model and solve real-life applications.	Have students solve the Pythagorean trigonometric identities for sin, cosine and tangent.	Larsen Text	Section: 47.4	Pg: 488-490

7.5 Partial Fractions				
Specific Learning Objective	Warm-Up/Starting Options		Practice & A	Apply
-Understand the concept of partial fraction decomposition. -Use partial fractions decomposition with linear factors to integrate rational functions. -Use partial fraction decomposition with quadratic factors to integrate rational functions.	Ask students: How can we decompose a function? Give students a rational function with 1/basic quadratic. Allow them to factor the denominator and then see if they can write it as the sum of two fractions.	Larsen Text	Section: 7.5	Pg: 498-499

PART IV: EVIDENCE OF LEARNING

IDENTIFY THE METHODS BY WHICH STUDENTS WILL DEMONSTRATE THEIR UNDERSTANDING OF CONTENT AND THEIR ABILITY TO APPLY SKILLS.

Assessments				
Summative	Formative	Performance		
The following assessments will be used to evaluate student learning, skill acquisition and academic achievement of the Standards of Mathematical Practice and the New Jersey Learning Standards for Mathematics listed under each chapter in the Algebra 1 curriculum/syllabus at the conclusion of an instructional time period. Diagnostic Pre-Test Chapter Tests Projects End-Of –Course Assessment	The effectiveness of the instructional program will be based on numerous activities and strategies including the following: teacher observations, students collaborating with peers, questioning strategies, student record-keeping, quizzes, exit/admit assignments, peer/self-assessments, learning/response logs, discussions and practice presentations.	 The following assessments require students to utilize various strands of mathematics. Projects Practice AP Exam Questions Homework Classwork 		
List of Accommodations and Modifications Special Education 504 Students At Risk Students ELL Gifted and Talented 				

- <u>New Jersey Student Learning Standards</u>
- <u>Career Readiness, Life Literacies, and Key Skills</u>
- LGBT and Disabilities Law
- Asian and Pacific Islander

AP CALCULUS AB AND BC

8 **Mathematical Practices**

Practice 1	Practice 2	Practice 3	Practice 4
Implementing Mathematical Processes 1 Determine expressions and values using mathematical procedures and rules.	Connecting Representations Translate mathematical information from a single representation or across multiple representations.	Justification Justify reasoning and solutions.	Communication and Notation • Use correct notation, language, and mathematical conventions to communicate results or solutions.
- SKILLS			
1.A Identify the question to be answered or problem to	Identify common underlying structures in	3.A Apply technology to develop claims and	4.4 Use precise mathematical language.

1.8 Identify key and relevant information to answer a question or solve a problem (not assessed).

be solved (not assessed).

1.6 Identify an appropriate mathematical rule or procedure based on the classification of a given expression (e.g., Use the chain rule to find the derivative of a composite function).

1.0 Identify an appropriate mathematical rule or procedure based on the relationship between concepts (e.g., rate of change and accumulation) or processes (e.g., differentiation and its inverse process, anti-differentiation) to solve problems.

1.E Apply appropriate mathematical rules or procedures, with and without technology.

Explain how an approximated value relates to the actual value.

problems involving different contextual situations.

2.8 Identify mathematical information from graphical, numerical, analytical, and/or verbal representations.

2.c Identify a re-expression of mathematical information presented in a given representation.

2.D Identify how mathematical characteristics or properties of functions are related in different representations.

2.E Describe the relationships among different representations of functions and their derivatives.

conjectures (not assessed).

3.B Identify an appropriate mathematical definition, theorem, or test to apply.

s.c Confirm whether hypotheses or conditions of a selected definition, theorem, or test have been satisfied.

3.D Apply an appropriate mathematical definition, theorem, or test.

3.E Provide reasons or rationales for solutions and conclusions.

3.F Explain the meaning of mathematical solutions in context.

3.0 Confirm that solutions are accurate and appropriate.

4.8 Use appropriate units of measure.

4.C Use appropriate mathematical symbols and notation (e.g., Represent a derivative using f'(x), y', and dy).

4.D Use appropriate graphing techniques.

4.E Apply appropriate rounding procedures.

Black Horse Pike Regional School District

Where inspiring excellence is our standard, and student achievement is the result.

AP CALCULUS BC 034000

Updated: July 2023

PART I: UNIT RATIONALE

WHY ARE STUDENTS LEARNING THIS CONTENT AND THESE SKILLS?

Applications of Integration

Students will use integration to find the area between two curves. They will also use rotation and other techniques to find the volume of a variety of 3-D solids as well as of solids with known cross-sectional areas. The First Fundamental Theorem of Calculus will play a major role in the development in understanding of both area and volume, and students will have to rely on a variety of integration techniques to help them progress through the chapter including: substitution, transcendental and trigonometric techniques.

Essential Questions	Enduring Understandings
 What is the Fundamental Theorem of Calculus? How do you find the area of a region between two curves? How can you use integrals to find the volume of a solid? How can you use definite integrals to find the arc length of a smooth curve and the area of a surface of revolution? 	 The Fundamental Theorem of Calculus connects differentiation and integration. Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval. Definite integrals allow us to solve problems involving the accumulation of change in length over an interval.
Tier 2 Vocabulary High-frequency words used throughout the unit	Tier 3 Vocabulary Discipline-specific words used throughout the unit
Definite Integrals closed interval revolution arc length	Fundamental Theorem of Calculus Disc Method Washer Method

PART II: INSTRUCTIONAL STRATEGIES AND RESOURCES DESCRIBE THE LEARNING TARGETS.

Unit Learning Targets/Goals/Outcomes				
Learning Target (Specific behavioral objectives that describe the skills students will learn)	NJSLS:	Mathematical Practices (see AP table the end of the document):		
 Evaluate a definite integral using the Fundamental Theorem of Calculus. Find the average value of a function over a closed interval. Find the area of a region between two curves using integration. Describe integration as an accumulation process. Find the volume of a solid of revolution using the disc method. Find the volume of a solid of revolution using the washer method. Find the arc length of a smooth curve. 	 HSA.SSE.B, HSG.MG.A3 HSA.SSE.B, HSG.MG.A3 HSA.SSE.B, HSG.MG.A3 HSA.SSE.B, HSG.MG.A3 HSG.GMD.A3 HSG.GMD.A3 HSG.GPE.B.7 	 1. 1.D 2. 2.D 3. 4.C 4. 1.E 5. 2.D 6. 4.E 7. 3.D 		

Interdisciplinary Connections					
Real-world problem-solving examples	Learning Target	NJSLS			
Section: 4.4Page: 322Description: Calculating the speed of sound	Find the average value of a function over a closed interval.	SCI.HS.PS4-1			
Section: 6.2 Page: 429 Description: 3-D printing using volume rotated around the y-axis.	Find the volume of a solid of revolution using the washer method.	TECH.8.2.12.D.3			
Section: 6.4Page: 449Description: Calculating the length of a paraboliccable on a suspension bridge.	Find the arc length of a smooth curve.	SCI.HS.LS2-7			

The following 21st-century skills and the 8 mathematical practices are embedded throughout the course and are evident in daily lessons, assignments, activities, assessments, and projects:				
21st-Century Skills	Mathematical Practices			
 Critical thinking Creativity Collaboration Communication Information literacy Technology literacy Media literacy Flexibility Leadership Initiative Productivity Social skills 	 Make sense of problems and persevere in solving them Reason abstractly and quantitatively Construct viable arguments and critique the reasoning of others Model with mathematics Use appropriate tools strategically Attend to precision Look for and make use of structure Look for and express regularity in repeated reasoning 			

Unit Resources:			
Textbook	Online Resources	Calculators	
Calculus for AP, 2nd Ed, Larson/Battaglia	https://apcentral.collegeboard.org https://sso.cengage.com/cb WebAssign CalcChat.com CalcView.com	TI-84 Plus TI-89 Desmos.com	

Students will write:

Students will define and compare/contrast given terms. Students will describe and write about a diagram using mathematical language. Students will relate real-world situations using geometry terminology. Students will also prove postulates and theorems

- Explain the difference between finding area and volume.
- Write how to find an area of a region using cross sections. How is this different from rotations?

PART III: TRANSFER OF KNOWLEDGE AND SKILLS

DESCRIBE THE LEARNING EXPERIENCE.

How will students uncover content and build skills?

4.4 The Fundamental Theorem of Calculus			
Specific Learning Objective	Warm-Up/Starting Options	Practice & Apply	
Determine the average value of a function using definite integrals. Interpret the meaning of a definite integral in accumulation problems. Evaluate a definite integral using the Fundamental Theorem of Calculus. Calculate a definite integral using areas and properties of definite integrals.	Determine the area under the curve given an interval.	Larson Text Section 4.4 Pg: 326-328	

6.1 Area of a Region Between Two Curves				
Specific Learning Objective	Warm-Up/Starting Options		Practice &	& Apply
Find the area of a region between two curves using integration. Find the area of a region between intersecting curves using integration. Describe integration as an accumulation process.	Given a picture of a shaded area and the equations bounding it, have students find the area.	Larson Text	Section 6.1	Pg: 416-419

6.2 Volume: The Disk and Washer Method				
Specific Learning Objective	Warm-Up/Starting Options		Practice &	Apply
Find the volume of a solid of revolution using the disk method. Find the volume of a solid of revolution using the washer method. Find the volume of a solid with known cross sections.	Students can explain the difference between a disk and a washer. How would their difference affect the volume of a rotating object?	Larson Text	Section 6.2	Pg: 427-430

6.4 Arc Length and Surfaces of Revolution			
Specific Learning Objective	Warm-Up/Starting Options	Practice & Apply	
Find the arc length of a smooth curve. Find the area of a surface of revolution.	Think of an example of when you would need to find the arc length that is not a circle.	Larson Text Section 6.4 Pg: 446-449	

PART IV: EVIDENCE OF LEARNING

IDENTIFY THE METHODS BY WHICH STUDENTS WILL DEMONSTRATE THEIR UNDERSTANDING OF CONTENT AND THEIR ABILITY TO APPLY SKILLS.

Assessments				
Summative	Formative	Performance		
The following assessments will be used to evaluate student learning, skill acquisition and academic achievement of the Standards of Mathematical Practice and the New Jersey Learning Standards for Mathematics listed under each chapter in the Algebra 1 curriculum/syllabus at the conclusion of an instructional time period. Diagnostic Pre-Test Chapter Tests Projects End-Of –Course Assessment	The effectiveness of the instructional program will be based on numerous activities and strategies including the following: teacher observations, students collaborating with peers, questioning strategies, student record-keeping, quizzes, exit/admit assignments, peer/self-assessments, learning/response logs, discussions and practice presentations.	 The following assessments require students to utilize various strands of mathematics. Projects Practice AP Exam Questions Homework Classwork 		
List of Accommodations and Modifications Special Education 504 Students At Risk Students ELL Gifted and Talented 				

- <u>New Jersey Student Learning Standards</u>
- <u>Career Readiness, Life Literacies, and Key Skills</u>
- LGBT and Disabilities Law
- Asian and Pacific Islander

AP CALCULUS AB AND BC

8 **Mathematical Practices**

Practice 1	Practice 2	Practice 3	Practice 4
Implementing Mathematical Processes 1 Determine expressions and values using mathematical procedures and rules.	Connecting Representations Translate mathematical information from a single representation or across multiple representations.	Justification Justify reasoning and solutions.	Communication and Notation • Use correct notation, language, and mathematical conventions to communicate results or solutions.
- SKILLS			
1.A Identify the question to be answered or problem to	Identify common underlying structures in	3.A Apply technology to develop claims and	4.4 Use precise mathematical language.

1.8 Identify key and relevant information to answer a question or solve a problem (not assessed).

be solved (not assessed).

1.6 Identify an appropriate mathematical rule or procedure based on the classification of a given expression (e.g., Use the chain rule to find the derivative of a composite function).

1.0 Identify an appropriate mathematical rule or procedure based on the relationship between concepts (e.g., rate of change and accumulation) or processes (e.g., differentiation and its inverse process, anti-differentiation) to solve problems.

1.E Apply appropriate mathematical rules or procedures, with and without technology.

Explain how an approximated value relates to the actual value.

problems involving different contextual situations.

2.8 Identify mathematical information from graphical, numerical, analytical, and/or verbal representations.

2.c Identify a re-expression of mathematical information presented in a given representation.

2.D Identify how mathematical characteristics or properties of functions are related in different representations.

2.E Describe the relationships among different representations of functions and their derivatives.

conjectures (not assessed).

3.B Identify an appropriate mathematical definition, theorem, or test to apply.

s.c Confirm whether hypotheses or conditions of a selected definition, theorem, or test have been satisfied.

3.D Apply an appropriate mathematical definition, theorem, or test.

3.E Provide reasons or rationales for solutions and conclusions.

3.F Explain the meaning of mathematical solutions in context.

3.0 Confirm that solutions are accurate and appropriate.

4.8 Use appropriate units of measure.

4.C Use appropriate mathematical symbols and notation (e.g., Represent a derivative using f'(x), y', and dy).

4.D Use appropriate graphing techniques.

4.E Apply appropriate rounding procedures.

Black Horse Pike Regional School District

Where inspiring excellence is our standard, and student achievement is the result.

AP CALCULUS BC 034000

Updated: July 2023

PART I: UNIT RATIONALE

WHY ARE STUDENTS LEARNING THIS CONTENT AND THESE SKILLS?

Unit 6: Differential Equations

In this unit, students will learn to set up and solve separable differential equations. Slope fields can be used to represent solution curves to a differential equation and build understanding that there are infinitely many general solutions to a differential equation, varying only by a constant of integration. Students can locate a unique solution relevant to a particular situation, provided they can locate a point on the solution curve. By writing and solving differential equations leading to models for exponential growth and decay and logistic growth, students build understanding of topics introduced in Algebra II and other courses.

Essential Questions	Enduring Understandings	
 How do you approximate the particular solution of a differential equation? How are differential equations used in application problems, such as the exponential growth and decay models? How do you solve separable differential equations? How do you solve logistic differential equations? 	 Solving differential equations allows us to determine functions and develop models. 	
Tier 2 Vocabulary High-frequency words used throughout the unit	Tier 3 Vocabulary Discipline-specific words used throughout the unit	
Exponential Growth and Decay Differential Equation	Slope Field Euler's Method Separable Particular Solution General Solution Order	

PART II: INSTRUCTIONAL STRATEGIES AND RESOURCES DESCRIBE THE LEARNING TARGETS.

	Unit Learning Targets/Goals/Outcomes				
(5	Learning Target pecific behavioral objectives that describe the skills students will learn)		NJSLS:		ematical Practices (see AP the end of the document):
1.	Estimate solutions to differential equations.	1.	HSS.ID.C	1.	1.E, 2.C, 4.D
2.	Interpret verbal statements of problems as differential equations involving a derivative expression and verify solutions to differential equations.	2.	HSF.IF.C.8b	2.	2.C, 3.G
3.	Determine general and particular solutions to differential equations.	3.	HSA.APR.D	3.	1.E
4.	Interpret the meaning of a differential equation and the logistic growth model in its context.	4.	HSA.APR.D	4.	3.G, 3.F

Interdisciplinary Connections				
Real-world problem-solving examples Learning Target		NJSLS		
<i>Section</i> : 5.1 <i>Page</i> : 377 <i>Description:</i> Temperature - finding the general solution and comparing it to the exact solution.	Estimate solutions to differential equations.	SCI.HS.SS3-5		
<i>Section</i> : 5.2 <i>Page</i> : 382 <i>Description:</i> Using exponential growth model to estimate population growth over time.	Interpret verbal statements of problems as differential equations involving a derivative expression and verify solutions to differential equations.	SCI.HS.SS3.B		
<i>Section</i> : 5.3 <i>Page</i> : 390 <i>Description</i> : Modeling advertising awareness using separation of variables.	Determine general and particular solutions to differential equations.	CLKS-FP.6, CLKS-FP.7		

The following 21st-century skills and the 8 mathematical practices are embedded throughout the course and are evident in daily lessons, assignments, activities, assessments, and projects:				
21st-Century Skills	Mathematical Practices			
 Critical thinking Creativity Collaboration Communication Information literacy Technology literacy Media literacy Flexibility Leadership Initiative Productivity Social skills 	 Make sense of problems and persevere in solving them Reason abstractly and quantitatively Construct viable arguments and critique the reasoning of others Model with mathematics Use appropriate tools strategically Attend to precision Look for and make use of structure Look for and express regularity in repeated reasoning 			

Unit Resources:		
Textbook	Online Resources	Calculators
Calculus for AP, 2nd Ed, Larson/Battaglia	https://apcentral.collegeboard.org https://sso.cengage.com/cb WebAssign CalcChat.com CalcView.com	TI-84 Plus TI-89 Desmos.com

Students will write:

Students will define and compare/contrast given terms. Students will describe and write about a diagram using mathematical language. Students will relate real-world situations using geometry terminology. Students will also prove postulates and theorems

Explain the difference between a differential and a derivative.

Explain how slope fields and numerical methods can be used to solve differential equations without finding an algebraic solution.

Describe the difference between a particular solution and a general solution.

Explain the difference between growth and decay.

PART III: TRANSFER OF KNOWLEDGE AND SKILLS

DESCRIBE THE LEARNING EXPERIENCE.

How will students uncover content and build skills?

5.1 Slope Fields and Euler's Method				
Specific Learning Objective	Warm-Up/Starting Options		Practice & App	ly
Use initial conditions to find particular solutions of differential equations. Use slope fields to approximate solutions of differential equations. Use Euler's Method to approximate solutions of differential equations.	Students will sketch a line with the following slopes, -3, -1, 0, 1, 5.	Larson Text	Section: 5.1	Pg: 375-378

5.2 Growth and Decay				
Specific Learning Objective	Warm-Up/Starting Options		Practice & App	ly
Use separation of variables to solve a simple differential equation. Use exponential functions to model growth and decay in applied problems.	Students will sketch the graph of $y = \frac{1}{2}e^{2x}$ How can you make 1 change to make the graph represent an exponential decay function?	Larson Text	Section: 5.2	Pg: 384-386

5.3 Separation of Variables				
Specific Learning Objective	Warm-Up/Starting Options		Practice & App	ly
Recognize and solve differential equations that can be solved by separation of variables. Use differential equations to model and solve applied problems.	Solve the following: $\int_{0}^{1} \frac{24x}{(4x^{2}+4)^{2}}$	Larson Text	Section: 5.3	Pg: 393-396

5.4 The Logistic Equation				
Specific Learning Objective	Warm-Up/Starting Options		Practice & App	ly
Solve and analyze logistic differential equations. Use logistic differential equations to model and solve applied problems.	Match the slope field for 3 differential equations.	Larson Text	Section: 5.4	Pg: 402-403

PART IV: EVIDENCE OF LEARNING

IDENTIFY THE METHODS BY WHICH STUDENTS WILL DEMONSTRATE THEIR UNDERSTANDING OF CONTENT AND THEIR ABILITY TO APPLY SKILLS.

	Assessments			
Summative	Formative	Performance		
The following assessments will be used to evaluate student learning, skill acquisition and academic achievement of the Standards of Mathematical Practice and the New Jersey Learning Standards for Mathematics listed under each chapter in the Algebra 1 curriculum/syllabus at the conclusion of an instructional time period. Diagnostic Pre-Test Chapter Tests Projects End-Of –Course Assessment	The effectiveness of the instructional program will be based on numerous activities and strategies including the following: teacher observations, students collaborating with peers, questioning strategies, student record-keeping, quizzes, exit/admit assignments, peer/self-assessments, learning/response logs, discussions and practice presentations.	 The following assessments require students to utilize various strands of mathematics. Projects Practice AP Exam Questions Homework Classwork 		
List of Accommodations and Modifications Special Education 504 Students At Risk Students ELL Gifted and Talented 				

- <u>New Jersey Student Learning Standards</u>
- <u>Career Readiness, Life Literacies, and Key Skills</u>
- LGBT and Disabilities Law
- Asian and Pacific Islander

AP CALCULUS AB AND BC

8 **Mathematical Practices**

Practice 1	Practice 2	Practice 3	Practice 4
Implementing Mathematical Processes 1 Determine expressions and values using mathematical procedures and rules.	Connecting Representations Translate mathematical information from a single representation or across multiple representations.	Justification Justify reasoning and solutions.	Communication and Notation • Use correct notation, language, and mathematical conventions to communicate results or solutions.
- SKILLS			
1.A Identify the question to be answered or problem to	Identify common underlying structures in	3.A Apply technology to develop claims and	4.4 Use precise mathematical language.

1.8 Identify key and relevant information to answer a question or solve a problem (not assessed).

be solved (not assessed).

1.6 Identify an appropriate mathematical rule or procedure based on the classification of a given expression (e.g., Use the chain rule to find the derivative of a composite function).

1.0 Identify an appropriate mathematical rule or procedure based on the relationship between concepts (e.g., rate of change and accumulation) or processes (e.g., differentiation and its inverse process, anti-differentiation) to solve problems.

1.E Apply appropriate mathematical rules or procedures, with and without technology.

Explain how an approximated value relates to the actual value.

problems involving different contextual situations.

2.8 Identify mathematical information from graphical, numerical, analytical, and/or verbal representations.

2.c Identify a re-expression of mathematical information presented in a given representation.

2.D Identify how mathematical characteristics or properties of functions are related in different representations.

2.E Describe the relationships among different representations of functions and their derivatives.

conjectures (not assessed).

3.B Identify an appropriate mathematical definition, theorem, or test to apply.

s.c Confirm whether hypotheses or conditions of a selected definition, theorem, or test have been satisfied.

3.D Apply an appropriate mathematical definition, theorem, or test.

3.E Provide reasons or rationales for solutions and conclusions.

3.F Explain the meaning of mathematical solutions in context.

3.0 Confirm that solutions are accurate and appropriate.

4.8 Use appropriate units of measure.

4.C Use appropriate mathematical symbols and notation (e.g., Represent a derivative using f'(x), y', and dy).

4.D Use appropriate graphing techniques.

4.E Apply appropriate rounding procedures.

Black Horse Pike Regional School District

Where inspiring excellence is our standard, and student achievement is the result. AP CALCULUS BC

034000

Updated: July 2023 PART I: UNIT RATIONALE <u>WHY</u> ARE STUDENTS LEARNING THIS CONTENT AND THESE SKILLS?

Unit Title: Parametric Equations, Polar Coordinates, and Vectors

In this unit, students will build on their understanding of straight-line motion to solve problems in which particles are moving along curves in the plane. Students will define parametric equations and vector-valued functions to describe planar motion and apply calculus to solve motion problems. Students will learn that polar equations are a special case of parametric equations and will apply calculus to analyze graphs and determine lengths and areas. This unit should be treated as an opportunity to reinforce past learning and transfer knowledge and skills to new situations, rather than as a new list of facts or strategies to memorize.

	Essential Questions	Enduring Understandings	
1.	What are parametric equations and how do you find a set of parametric equations to represent a curve?	 Derivatives allow us to solve real-world problems involving rates of change. 	
2.	How can you find the slope of a tangent line and the arc length of a curve using a set of parametric equations?	Definite integrals allow us to solve problems involving the accumulation of change in length over and interval.	
3.	What is the polar coordinate system and the properties of curves written in polar form?	 Recognizing opportunities to apply derivative rules can simplify differentiation 	
4. 5.	How do you integrate and find arc length of curves in polar coordinates? What are vectors and how do you perform operations using vectors?	 Solving an initial value problem allows us to determine an expression for the position of a particle moving in the plane. 	
6.		5. Derivatives can be used to determine velocity, speed, and acceleration for a particle moving along a curve in the plane defined	
7.	How do you describe velocity and acceleration associated with vector-valued functions?	using parametric or vector-valued functions.	

Tier 2 Vocabulary High-frequency words used throughout the unit		Disciplin	Tier 3 Vocabulary Discipline-specific words used throughout the unit	
Planar Curve	Smooth	Derivative	Parameter	Parametric Equation
Tangent	Area	Arc Length	Polar Coordinates	Polar Graph
Vectors	Scalar	Limits / Continuity	Vector-Valued Function	

PART II: INSTRUCTIONAL STRATEGIES AND RESOURCES DESCRIBE THE LEARNING TARGETS.

Unit Learning Targets/Goals/Outcomes			
Learning Target (Specific behavioral objectives that describe the skills students will learn)	<u>NJSLS:</u>	Mathematical Practices (see AP table the end of the document):	
 Find a set of parametric equations to represent a curve. Find the slope of a tangent line to a curve given by para. eqs. Understand the polar coordinate system, including graphing. Find the area of a region bounded by a polar graph. Perform vector operations and interpret the results geometrically. Differentiate and integrate vector-valued functions. Describe velocity and acceleration with vector-valued functions. 	 HSA.REI.D HSA.SSE.B HSF.IF.C HSF.IF.C HSN.VM.B HSN.VM.A HSN.VM.A.3 	1. 1E, 2D 2. 1D, 1E 3. 2D 4. 2D, 3D 5. 1D 6. 1D, 1E 7. 1E	

Interdisciplinary Connections				
Real-world problem-solving examples	Learning Target	NJSLS		
Section: 9.2 Page: 654 Description: Projectile motion of a baseball	Find a set of parametric equations to represent a curve.	SCI.HS-PS2.A		
Section: 9.5Page: 679Description: Radiation from a transmitting antenna	Find the area of a region bounded by a polar graph.	SCI.HS.PS4.B		
Section: 9.6Page: 687Description: Tension of a cable supporting a load	Perform vector operations and interpret the results geometrically.	SCI.HS-PS2.A		

The following 21st-century skills and the 8 mathematical practices are embedded throughout the course and are evident in dail lessons, assignments, activities, assessments, and projects:		
21st-Century Skills	Mathematical Practices	
 Critical thinking Creativity Collaboration Communication Information literacy Technology literacy Media literacy Flexibility Leadership Initiative Productivity Social skills 	 Make sense of problems and persevere in solving them Reason abstractly and quantitatively Construct viable arguments and critique the reasoning of others Model with mathematics Use appropriate tools strategically Attend to precision Look for and make use of structure Look for and express regularity in repeated reasoning 	

Unit Resources:				
Textbook	Online Resources	Calculators		
Calculus for AP, 2nd Ed, Larson/Battaglia	https://apcentral.collegeboard.org https://sso.cengage.com/cb WebAssign CalcChat.com CalcView.com	TI-84 Plus TI-89 Desmos.com		

Students will write:

Students will define and compare/contrast given terms. Students will describe and write about a diagram using mathematical language. Students will relate real-world situations using geometry terminology. Students will also prove postulates and theorems

- Explain the process of sketching a plane curve given by parametric equations. What is meant by the "orientation" of the curve?
- Explain how to find the arc length of a smooth curve given by x = f(t) and y = g(t) on the interval [a, b].
- Describe the differences between the polar and rectangular coordinate systems.
- How are the slopes of tangent lines determined in polar coordinates?
- What are tangent lines at the pole and how are they determined?
- Consider two forces of equal magnitude acting on a point. When the magnitude of the resultant is the sum of the magnitude of the two forces, make a conjecture about the angle between the two forces. What happens when the resultant of the two forces is 0?
- State the definition of continuity of a vector-valued function and give an example of a vector-valued function that is defined, but not continuous, at t = 2.
- Compare integration of a vector-valued function with integration of a real-valued function.
- Explain how a particle can be accelerating even though its speed is constant.

PART III: TRANSFER OF KNOWLEDGE AND SKILLS

DESCRIBE THE LEARNING EXPERIENCE.

How will students uncover content and build skills?

9.2 - Plane Curves and Parametric Equations					
Specific Learning Objective	Warm-Up/Starting Options		Practice & Apply		
 Sketch the graph of a curve given by a set of parametric equations Eliminate the parameter in a set of parametric equations. Find a set of parametric equations to represent a curve 	Explain how to write any ordered pair on the unit circle using trig functions and the angle θ formed by the positive x-axis and the point on the circle.	Larson Text	Section: 9.2 Pg: 652-654	1	

9.4 - Polar Coordinates and Polar Graphs					
Specific Learning Objective	Warm-Up/Starting Options		Practice & Apply		
 Understand the polar coordinate system. Rewrite rectangular coordinates and equations in polar form and vice versa. Sketch the graph of an equation given in polar form. Find the slope of a tangent line to a polar graph. Identify several types of special polar graphs. 	Evaluate 3-4 trigonometric values of angle measurements	Larson Text	Section: 9.4 Pg: 670 - 672		

9.6 - Vectors in the Plane					
Specific Learning Objective Warm-Up/Starting Options Practice & Apply					
 Write the component form of a vector. Perform vector operations and interpret the results geometrically. 	 Define the terms 'magnitude' and 'direction' in your own words in relation to mathematics. Try and recall how to add two vectors geometrically using an xy coordinate plane. 	Larson Text	Section: 9.6	Pg: 686 - 688	

9.3 - Parametric Equations and Calculus				
Specific Learning Objective	Practice & Apply			
 Find the slope of a tangent line to a curve given by a set of parametric equations. Find the arc length of a curve given by a set of parametric equations. 	 Eliminate the parameter and write the corresponding equation in rectangular coordinates. Create a set of parametric equations using trig functions that describe the path of a particle moving on the unit circle from (1,0) to (0,1) in a counterclockwise motion. 	Larson Text Section: 9.3 Pg: 659-62		

9.5 - Area and Arc Length in Polar Coordinates				
Specific Learning Objective	Warm-Up/Starting Options		Practice & Ap	ply
 FInd the area of a region bounded by a polar graph. Find the points of intersection of two polar graphs. Find the arc length of a polar graph. 	 Converting polar coordinates to rectangular and vice versa (3-4 examples) If integration in rectangular coordinates uses sums of rectangles, what shape do you think we will be adding up if our representation is in polar form? Justify your conjecture. 	Larson Text	Section: 9.5	Pg: 687 - 680

9.7 - Vector-Valued Functions				
Specific Learning Objective	Warm-Up/Starting Options	Practice & Apply		
 Analyze and sketch a plane curve given by a vector-valued function. Extend the concepts of limits and continuity to vector-valued functions. Differentiate a vector-valued function. Integrate a vector-valued function. 	 Find the following vector magnitudes (3 examples) What are the three criteria for a function to be continuous at a point in the real-valued function case? 	Larson Text Section: 9.7 Pg: 695 - 697		

9.8 - Velocity and Acceleration			
Specific Learning Objective	Warm-Up/Starting Options	Practice & Apply	
 Describe the velocity and acceleration associated with a vectored-value function. 	 Find derivatives for the following vector-valued functions. 	Larson Text Section: 9.8 Pg: 702-703	

PART IV: EVIDENCE OF LEARNING IDENTIFY THE METHODS BY WHICH STUDENTS WILL DEMONSTRATE THEIR UNDERSTANDING OF CONTENT AND THEIR ABILITY TO APPLY SKILLS.

Assessments				
Summative	Formative	Performance		
The following assessments will be used to evaluate student learning, skill acquisition and academic achievement of the Standards of Mathematical Practice and the New Jersey Learning Standards for Mathematics listed under each chapter in the Algebra 1 curriculum/syllabus at the conclusion of an instructional time period. Diagnostic Pre-Test Chapter Tests Projects End-Of –Course Assessment	The effectiveness of the instructional program will be based on numerous activities and strategies including the following: teacher observations, students collaborating with peers, questioning strategies, student record-keeping, quizzes, exit/admit assignments, peer/self-assessments, learning/response logs, discussions and practice presentations.	 The following assessments require students to utilize various strands of mathematics. Projects Practice AP Exam Questions Homework Classwork 		
List of Accommodations and Modifications Special Education 504 Students At Risk Students ELL Gifted and Talented 				

- <u>New Jersey Student Learning Standards</u>
- Career Readiness, Life Literacies, and Key Skills
- LGBT and Disabilities Law
- Asian and Pacific Islander

AP CALCULUS AB AND BC

8 **Mathematical Practices**

Practice 1	Practice 2	Practice 3	Practice 4
Implementing Mathematical Processes 1 Determine expressions and values using mathematical procedures and rules.	Connecting Representations Translate mathematical information from a single representation or across multiple representations.	Justification Justify reasoning and solutions.	Communication and Notation • Use correct notation, language, and mathematical conventions to communicate results or solutions.
- SKILLS			
1.A Identify the question to be answered or problem to	Identify common underlying structures in	3.A Apply technology to develop claims and	4.4 Use precise mathematical language.

1.8 Identify key and relevant information to answer a question or solve a problem (not assessed).

be solved (not assessed).

1.6 Identify an appropriate mathematical rule or procedure based on the classification of a given expression (e.g., Use the chain rule to find the derivative of a composite function).

1.0 Identify an appropriate mathematical rule or procedure based on the relationship between concepts (e.g., rate of change and accumulation) or processes (e.g., differentiation and its inverse process, anti-differentiation) to solve problems.

1.E Apply appropriate mathematical rules or procedures, with and without technology.

Explain how an approximated value relates to the actual value.

problems involving different contextual situations.

2.8 Identify mathematical information from graphical, numerical, analytical, and/or verbal representations.

2.c Identify a re-expression of mathematical information presented in a given representation.

2.D Identify how mathematical characteristics or properties of functions are related in different representations.

2.E Describe the relationships among different representations of functions and their derivatives.

conjectures (not assessed).

3.B Identify an appropriate mathematical definition, theorem, or test to apply.

s.c Confirm whether hypotheses or conditions of a selected definition, theorem, or test have been satisfied.

3.D Apply an appropriate mathematical definition, theorem, or test.

3.E Provide reasons or rationales for solutions and conclusions.

3.F Explain the meaning of mathematical solutions in context.

3.0 Confirm that solutions are accurate and appropriate.

4.8 Use appropriate units of measure.

4.C Use appropriate mathematical symbols and notation (e.g., Represent a derivative using f'(x), y', and dy).

4.D Use appropriate graphing techniques.

4.E Apply appropriate rounding procedures.

Black Horse Pike Regional School District

Where inspiring excellence is our standard, and student achievement is the result.

AP CALCULUS BC

034000

Updated: July 2023 PART I: UNIT RATIONALE WHY ARE STUDENTS LEARNING THIS CONTENT AND THESE SKILLS?

Unit Title: Infinite Series

In this unit, students need to understand that a sum of infinitely many terms may converge to a finite value. They can develop intuition by exploring graphs, tables, and symbolic expressions for series that converge and diverge and for Taylor polynomials. Students should build connections to past learning, such as how evaluating improper integrals relates to the integral test or how using limiting cases of power series to represent continuous functions relates to differentiation and integration. Students who rely solely on memorizing a long list of tests and procedures typically find little success achieving a lasting conceptual understanding of series.

	Essential Questions	Enduring Understandings
1.	How do you write terms of a sequence and determine whether the sequence converges or diverges?	 Applying limits may allow us to determine the finite sum of infinitely many terms.
2.	What is a convergent infinite series?	2. Power series allow us to represent associated functions on an
3.	How do you use the Integral Test or properties of special series (p and Harmonic) to determine whether or not an infinite series converges or diverges?	appropriate interval
4.	How do you use comparison tests to determine the convergence of infinite series?	
5.	What is an alternating series and how do you determine its convergence?	
6.	What are the root and ratio tests to determine convergence of series?	
7.	How do you find polynomial approximations (such as Taylor and Maclaurin polynomials) of elementary functions?	
8.	What is a power series and how do you find the radius and intervals of convergence of them?	

-	9. How do you construct power series using operations?10. How do you find Taylor or Maclaurin series for a function?				
High-fre	Tier 2 Vocabulary High-frequency words used throughout the unit		Tier 3 Vocabulary Discipline-specific words used throughout the unit		
Sequence Geometric Series Ratio	Geometric Series Harmonic Series Polynomial		Convergence Bounded Power Series Interval of Convergence	Divergence Partial Sums Radius of Convergence	Monotonic Alternating Series

PART II: INSTRUCTIONAL STRATEGIES AND RESOURCES DESCRIBE THE LEARNING TARGETS.

	Unit Learning Targets/Goals/Outcomes					
	Learning Target (Specific behavioral objectives that describe the skills students will learn)		Mathematical Practices (see AP table the end of the document):			
1.	Write the terms of a sequence and decide whether a series converges or diverges.	1. HSF.IF.A.3	1. 3D			
2.	Understand the definition of a convergent infinite series.	2. HSA.SSE.B4	2. 3D			
3.	Use the Integral Test to determine whether an infinite series converges or diverges.	3. HSA.REI.A	3. 3B, 3D			
4.	Use comparison tests to determine the convergence or divergence of a series.	4. HSA.REI.D	4. 3D			
5.	Use the Alternating Series Test to determine the convergence of a series.	5. HSA.REI.D	5. 1E, 3D			
6.	Use the Ratio or Root Tests to determine whether a series converges or diverges.	6. HSA.REI.D	6. 3D			
7.	Find polynomial approximations (Taylor and Maclaurin) of elementary functions.	7. HSA.APR.C	7. 2C, 3D			
8.	Find the radius/interval of convergence of a power series.	8. HSA.REI.A	8. 1F, 2C			
9.	Find a geometric power series that represents a function.	9. HSA.APR.C	9. 3D			
10.	Find Taylor or Maclaurin series for different elementary functions.	10. HSA.APR.C	10. 2C			

	Interdisciplinary Connections						
Real-world problem-solving examples	Learning Target	NJSLS					
Section: 8.1 Page: 542 Description: Compound interest from a sequence perspective	Write the terms of a sequence and decide whether a series converges or diverges.	PFL.9.1.12.D.1					
Section: 8.2 Page: 552 Description: Multiplier Effect of tourism revenue in a resort city	Understand the definition of a convergent infinite series.	CAEP.9.2.12.C					
Section: 8.10 Page: 624 Description: Angular projectile motion	Find Taylor or Maclaurin series for different elementary functions.	SCI.HS-PS2.A					

21st-Century Skills Mathematical Practices					
 Critical thinking Creativity Collaboration Communication Information literacy Technology literacy Media literacy Flexibility Leadership Initiative Productivity 	 Make sense of problems and persevere in solving them Reason abstractly and quantitatively Construct viable arguments and critique the reasoning of others Model with mathematics Use appropriate tools strategically Attend to precision Look for and make use of structure Look for and express regularity in repeated reasoning 				

Unit Resources:					
Textbook	Online Resources	Calculators			
Calculus for AP, 2nd Ed, Larson/Battaglia	https://apcentral.collegeboard.org https://sso.cengage.com/cb WebAssign CalcChat.com CalcView.com	TI-84 Plus TI-89 Desmos.com			

Students will write:				
Students will define and compare/contrast given terms. Students will describe and write about a diagram using mathematical language. Students will relate real-world situations using geometry terminology. Students will also prove postulates and theorems				
- Let $\{a_n\}$ be an increasing sequence such that $2 \le a_n \le 4$. Explain why $\{a_n\}$ has a limit. What can you conclude about the limit?				
- You delete a finite number of terms from a divergent series. Will the new series still diverge? Explain your reasoning.				
- You add a finite number of terms to a convergent series. WIII the new series still converge? Explain your reasoning.				
- Define a <i>p</i> -series and state the requirements for its convergence.				
- Can you use the Limit Comparison Test to determine the limit of a series? Explain why or why not.				
- In your own words, describe the difference between absolute and conditional convergence of an alternating series.				
- What can you conclude about the convergence or divergence of Σa_n using the Ratio Test when a_n is a rational function of n? Explain.				
- An elementary function is approximated by a polynomial. In your own words, describe what is meant by saying that the polynomial is <i>expanded about c</i> or <i>centered at c</i> .				
- Compare the radius of convergence and the interval of convergence of a power series.				

- Describe three ways to find the Maclaurin Series for $cos^2 x$. Show that each method produces the same first three terms.

PART III: TRANSFER OF KNOWLEDGE AND SKILLS

DESCRIBE THE LEARNING EXPERIENCE.

How will students uncover content and build skills?

8.1 - Sequences					
Specific Learning Objective	Warm-Up/Starting Options		Practice & Apply		
 Write the terms of a sequence. Determine whether a sequence converges or diverges. Write a formula for the <i>n</i>th term of a sequence. Use properties of monotonic sequences and bounded sequences. 	Anything Fibonacci!	Larson Text	Section: 8.1 Pg: 542 - 544		

8.2 - Series and Convergence						
Specific Learning Objective	Warm-Up/Starting Options		Practice & App	ly		
 Understand the definition of a convergent infinite series. Use properties of infinite geometric series. Use the <i>n</i>th-Term Test for Divergence of an infinite series. 	Use recursive or explicit formulas to write out the first 5 terms of given sequences.	Larson Text	Section: 8.2 P	g: 552 - 554		

8.3 - The Integral Test and <i>p</i> -Series					
Specific Learning Objective	Warm-Up/Starting Options		Practice & Apply		
 Use the Integral Test to determine whether an infinite series converges or diverges. Use properties of <i>p</i>-series and harmonic series. 	Determine the first 5 partial sums of a set of series. Determine convergence or divergence of given series.	Larson Text	Section: 8.3 Pg:	559 - 561	

8.4 - Comparisons of Series					
Specific Learning Objective	Warm-Up/Starting Options		Practice & A	pply	
 Use the Direct Comparison test to determine whether a series converges or diverges. 	Error analysis of the use of the Integral Test to determine convergence for 2 given series.	Larson Text	Section: 8.4	Pg: 566 - 568	
 Use the Limit Comparison Test to determine whether a series converges or diverges. 	State the conditions on p-series convergence.				

8.5 - Alternating Series						
Specific Learning Objective	Warm-Up/Starting Options	Practice & Apply				
 Use the Alternating Series Test to determine whether an infinite series converges. Use the Alternating Series Remainder to approximate the sum of an alt. series. Classify a convergent series as absolutely or conditionally convergent. Rearrange an infinite series to obtain a different sum 	Use comparison tests to determine the convergence or divergence of given series.	Larson Text Section: 8.5 Pg: 575 - 576				

8.6 - The Ratio and Root Tests						
Specific Learning Objective	Warm-Up/Starting Options		Practice & A	pply		
 Use the Ratio Test to determine whether a series converges or diverges. Use the Root Test to determine whether a series converges or diverges. Review all convergence/divergence tests. 	List all convergence tests for series that we have learned thus far. Which is your favorite and why?	Larson Text	Section: 8.6	Pg: 583 - 585		

8.7 - Taylor Polynomials and Approximations						
Specific Learning Objective	Warm-Up/Starting Options		Practice & Apply			
 Find polynomial approximations of elementary functions and compare them with elementary functions. 	Find equations of tangent lines for given functions through given points.	Larson Text	Section: 8.7 Pg: 594 - 596			
 Find Taylor and Maclaurin polynomial approximations of elementary functions. Use the remainder of a Taylor polynomial. 	Open question. Can you think of any other way to approximate a function with other curves?					

8.8 - Power Series				
Specific Learning Objective	Warm-Up/Starting Options		Practice & Ap	ply
 Understand the definition of a power series. Find the radius and interval of convergence of a power series. Differentiate and integrate a power series. 	Determine the Maclaurin polynomials of degree 3 or 4 for a set of elementary functions	Larson Text	Section: 8.8	Pg: 604 - 606

8.9 - Representation of Functions by Power Series				
Specific Learning Objective	Warm-Up/Starting Options		Practice & Apply	
 Find a geometric power series that represents a function. Construct a power series using series operations. 	Find the function representation of a set of geometric series with known common ratios and starting terms.	Larson Text	Section: 8.9 Pg: 612 - 613	\$

8.10 - Taylor and Maclaurin Series				
Specific Learning Objective	Warm-Up/Starting Options		Practice & Ap	oply
 Find a Taylor or Maclaurin series for a function. Find a binomial series. Use a basic list of Taylor Series to find other Taylor Series. 	Use desmos.com to graph the partial sums (Maclaurin polynomial) of the exponential function. What do you notice about the approximation as you add more and more terms?	Larson Text	Section: 8.9	Pg: 623 - 625

PART IV: EVIDENCE OF LEARNING IDENTIFY THE METHODS BY WHICH STUDENTS WILL DEMONSTRATE THEIR UNDERSTANDING OF CONTENT AND THEIR ABILITY TO APPLY SKILLS.

Assessments			
Summative	Formative	Performance	
The following assessments will be used to evaluate student learning, skill acquisition and academic achievement of the Standards of Mathematical Practice and the New Jersey Learning Standards for Mathematics listed under each chapter in the Algebra 1 curriculum/syllabus at the conclusion of an instructional time period. Diagnostic Pre-Test Chapter Tests Projects End-Of –Course Assessment	The effectiveness of the instructional program will be based on numerous activities and strategies including the following: teacher observations, students collaborating with peers, questioning strategies, student record-keeping, quizzes, exit/admit assignments, peer/self-assessments, learning/response logs, discussions and practice presentations.	 The following assessments require students to utilize various strands of mathematics. Projects Practice AP Exam Questions Homework Classwork 	
List of Accommodations and Modifications Special Education 504 Students At Risk Students ELL Gifted and Talented 			

- <u>New Jersey Student Learning Standards</u>
- Career Readiness, Life Literacies, and Key Skills
- LGBT and Disabilities Law
- Asian and Pacific Islander

8 **Mathematical Practices**

Practice 1	Practice 2	Practice 3	Practice 4
Implementing Mathematical Processes 1 Determine expressions and values using mathematical procedures and rules.	Connecting Representations Translate mathematical information from a single representation or across multiple representations.	Justification Justify reasoning and solutions.	Communication and Notation • Use correct notation, language, and mathematical conventions to communicate results or solutions.
- SKILLS			
1.A Identify the question to be answered or problem to	Identify common underlying structures in	3.A Apply technology to develop claims and	4.4 Use precise mathematical language.

1.8 Identify key and relevant information to answer a question or solve a problem (not assessed).

be solved (not assessed).

1.6 Identify an appropriate mathematical rule or procedure based on the classification of a given expression (e.g., Use the chain rule to find the derivative of a composite function).

1.0 Identify an appropriate mathematical rule or procedure based on the relationship between concepts (e.g., rate of change and accumulation) or processes (e.g., differentiation and its inverse process, anti-differentiation) to solve problems.

1.E Apply appropriate mathematical rules or procedures, with and without technology.

Explain how an approximated value relates to the actual value.

problems involving different contextual situations.

2.8 Identify mathematical information from graphical, numerical, analytical, and/or verbal representations.

2.c Identify a re-expression of mathematical information presented in a given representation.

2.D Identify how mathematical characteristics or properties of functions are related in different representations.

2.E Describe the relationships among different representations of functions and their derivatives.

conjectures (not assessed).

3.B Identify an appropriate mathematical definition, theorem, or test to apply.

s.c Confirm whether hypotheses or conditions of a selected definition, theorem, or test have been satisfied.

3.D Apply an appropriate mathematical definition, theorem, or test.

3.E Provide reasons or rationales for solutions and conclusions.

3.F Explain the meaning of mathematical solutions in context.

3.0 Confirm that solutions are accurate and appropriate.

4.8 Use appropriate units of measure.

4.C Use appropriate mathematical symbols and notation (e.g., Represent a derivative using f'(x), y', and dy).

4.D Use appropriate graphing techniques.

4.E Apply appropriate rounding procedures.

Black Horse Pike Regional School District

Where inspiring excellence is our standard, and student achievement is the result.

AP CALCULUS BC 034000

Updated: July 2023

PART I: UNIT RATIONALE

WHY ARE STUDENTS LEARNING THIS CONTENT AND THESE SKILLS?

Unit Title: AP Test Review		
This unit frameworks the AP Calculus BC content students must know and skills they must master in order to earn transferable, long-term understandings of calculus. The unit reflects a commitment to the previous units where students will elevate their understanding through AP test style questioning, approaches, and breakdowns of test questions. Students will build their test taking skills through copious MCQ and FRQ question styling.		
Essential Questions Enduring Understandings		
 How do you dissect and apply appropriate calculus techniques to FRQ AP Test questions? How do you dissect and apply appropriate calculus techniques to MCQ AP Test questions? 	 Reasoning with definitions, theorems and properties can be used to justify claims about FRQ style questions. Reasoning with definitions, theorems and properties can be used to justify claims about MCQ style questions. 	
Tier 2 Vocabulary High-frequency words used throughout the unit	Tier 3 Vocabulary Discipline-specific words used throughout the unit	
1. Limit4. Differential2. Derivative5. Volume3. Integral	1. FRQ 2. MCQ	

PART II: INSTRUCTIONAL STRATEGIES AND RESOURCES DESCRIBE THE LEARNING TARGETS.

Unit Lea	rning Targets/Goals/Outcomes	
Learning Target (Specific behavioral objectives that describe the skills students will learn)	<u>NJSLS:</u>	Mathematical Practices (see AP table the end of the document):
 Identify, calculate, and analyze various FRQ and MCQ problems 	 ALL High School Mathematics Standards 	• ALL

Interdisciplinary Connections			
Real-world problem-solving examples	Learning Target	NJSLS	
Section: AP Practice ExamPage: 714Description: Farming - Feed Tank Volume	Identify, calculate, and analyze various FRQ and MCQ problems	HS-ESS2-4	
Section: AP Practice ExamPage: 715Description: Manufacturing to optimize gas tanks	Identify, calculate, and analyze various FRQ and MCQ problems	HS-ESS2-4	
Section: AP Practice ExamPage: 720Description: Particle Motion	Identify, calculate, and analyze various FRQ and MCQ problems	HS-PS2-2	

The following 21st-century skills and the 8 mathematical practices are embedded throughout the course and are evident in daily lessons, assignments, activities, assessments, and projects:		
21st-Century Skills	Mathematical Practices	
Critical thinkingCreativity	 Make sense of problems and persevere in solving them Reason abstractly and quantitatively 	

 Collaboration Communication Information literacy Technology literacy Media literacy Flexibility Leadership Initiative Productivity Social skills 	 Construct viable arguments and critique the reasoning of others Model with mathematics Use appropriate tools strategically Attend to precision Look for and make use of structure Look for and express regularity in repeated reasoning
---	--

Unit Resources:		
Textbook	Online Resources	Calculators
Calculus for AP, 2nd Ed, Larson/Battaglia	https://apcentral.collegeboard.org https://sso.cengage.com/cb WebAssign CalcChat.com CalcView.com	TI-84 Plus TI-89 Desmos.com

Students will write:		
Students will define and compare/contrast given terms. Students will describe and write about a diagram using mathematical language. Students will relate real-world situations using geometry terminology. Students will also prove postulates and theorems		
Write the appropriate calculus concept for a real world problem		
Write justifications for their reasoning on FRQ style problems		
Short, concise self error analyses about their mock results		
Definitions of key terms and theorems from the entire course		

PART III: TRANSFER OF KNOWLEDGE AND SKILLS

DESCRIBE THE LEARNING EXPERIENCE.

How will students uncover content and build skills?

AP Test Review		
Specific Learning Objective	Warm-Up/Starting Options	Practice & Apply
 Identify, calculate, and analyze various FRQ and MCQ problems 	Describe how the three main components of calculus (Limits, Derivatives, and Integrals) are connected.	AP Central FRQ & MCQ

PART IV: EVIDENCE OF LEARNING IDENTIFY THE METHODS BY WHICH STUDENTS WILL DEMONSTRATE THEIR UNDERSTANDING OF CONTENT AND THEIR ABILITY TO APPLY SKILLS.

Assessments			
Summative	Formative	Performance	
The following assessments will be used to evaluate student learning, skill acquisition and academic achievement of the Standards of Mathematical Practice and the New Jersey Learning Standards for Mathematics listed under each chapter in the Algebra 1 curriculum/syllabus at the conclusion of an instructional time period. Diagnostic Pre-Test Chapter Tests Projects End-Of –Course Assessment	The effectiveness of the instructional program will be based on numerous activities and strategies including the following: teacher observations, students collaborating with peers, questioning strategies, student record-keeping, quizzes, exit/admit assignments, peer/self-assessments, learning/response logs, discussions and practice presentations.	 The following assessments require students to utilize various strands of mathematics. Projects Practice AP Exam Questions Homework Classwork 	

List of Accommodations and Modifications

- Special Education
- <u>504 Students</u>
- <u>At Risk Students</u>
- <u>ELL</u>
- Gifted and Talented

State Mandates and Resources

- <u>New Jersey Student Learning Standards</u>
- Career Readiness, Life Literacies, and Key Skills
- LGBT and Disabilities Law
- Asian and Pacific Islander

8 **Mathematical Practices**

Practice 1	Practice 2	Practice 3	Practice 4
Implementing Mathematical Processes 1 Determine expressions and values using mathematical procedures and rules.	Connecting Representations Translate mathematical information from a single representation or across multiple representations.	Justification Justify reasoning and solutions.	Communication and Notation • Use correct notation, language, and mathematical conventions to communicate results or solutions.
- SKILLS			
1.A Identify the question to be answered or problem to	Identify common underlying structures in	3.A Apply technology to develop claims and	4.4 Use precise mathematical language.

1.8 Identify key and relevant information to answer a question or solve a problem (not assessed).

be solved (not assessed).

1.6 Identify an appropriate mathematical rule or procedure based on the classification of a given expression (e.g., Use the chain rule to find the derivative of a composite function).

1.0 Identify an appropriate mathematical rule or procedure based on the relationship between concepts (e.g., rate of change and accumulation) or processes (e.g., differentiation and its inverse process, anti-differentiation) to solve problems.

1.E Apply appropriate mathematical rules or procedures, with and without technology.

Explain how an approximated value relates to the actual value.

problems involving different contextual situations.

2.8 Identify mathematical information from graphical, numerical, analytical, and/or verbal representations.

2.c Identify a re-expression of mathematical information presented in a given representation.

2.D Identify how mathematical characteristics or properties of functions are related in different representations.

2.E Describe the relationships among different representations of functions and their derivatives.

conjectures (not assessed).

3.B Identify an appropriate mathematical definition, theorem, or test to apply.

s.c Confirm whether hypotheses or conditions of a selected definition, theorem, or test have been satisfied.

3.D Apply an appropriate mathematical definition, theorem, or test.

3.E Provide reasons or rationales for solutions and conclusions.

3.F Explain the meaning of mathematical solutions in context.

3.0 Confirm that solutions are accurate and appropriate.

4.8 Use appropriate units of measure.

4.C Use appropriate mathematical symbols and notation (e.g., Represent a derivative using f'(x), y', and dy).

4.D Use appropriate graphing techniques.

4.E Apply appropriate rounding procedures.

Black Horse Pike Regional School District

Where inspiring excellence is our standard, and student achievement is the result.

AP CALCULUS BC 034000

Updated: July 2023

PART I: UNIT RATIONALE

WHY ARE STUDENTS LEARNING THIS CONTENT AND THESE SKILLS?

Unit Title: Additional Topics

This unit is to serve as an additional topics unit to prepare students in their post-secondary mathematical careers. It is essential for discovering and developing important groundwork for multivariate and differential calculus courses. Students will solve net change and shell method problems algebraically and conceptually. They will extend their knowledge from all prior coursework to build both a solid and intuitive understanding of these topics. Strong emphasis will be on communicating both orally and written what the application of their answers mean.

	Essential Questions	Enduring Understandings	
 What is the Net Change Theorem? How do you determine the volume of a solid using the Shell Method 		 Reasoning with theorems of calculus to justify values of the rate of change function Definite integrals allow us to solve problems involving the accumulation of change in area or volume over an interval 	
High-freq	Tier 2 Vocabulary nuency words used throughout the unit	Tier 3 Vocabulary Discipline-specific words used throughout the unit	
1. Washer4. Cylinder2. Disc5. Integral3. Axis of Rotation		1. Shell	

PART II: INSTRUCTIONAL STRATEGIES AND RESOURCES DESCRIBE THE LEARNING TARGETS.

Unit Learning Targets/Goals/Outcomes		
Learning Target (Specific behavioral objectives that describe the skills students will learn)	<u>NJSLS:</u>	Mathematical Practices (see AP table the end of the document):
 Understand and use the Net Change Theorem Find the volume of a solid of revolution using the Shell Method 	1. HSA.SEE.B 2. HSG.GMD.A3	1. 1D, 2D 2. 2D, 4E

Interdisciplinary Connections			
Real-world problem-solvi	ng examples	Learning Target	NJSLS
<i>Section: 4.5</i> <i>Description:</i> Velocity and Initial	Page : 333 Position	Understand and use the Net Change Theorem	HS-PS2-2
<i>Section:</i> 6.3 <i>Description:</i> Oblateness of Satur	Page : 439 n	Find the volume of a solid of revolution using the Shell Method	HS-ESS3-2
Section: 6.3 Description: Machine Part for In	Page: 438 stallation	Find the volume of a solid of revolution using the Shell Method	HS-ESS2-4

21st-Century Skills	Mathematical Practices
Critical thinking Creativity Collaboration Communication Information literacy Technology literacy Media literacy Flexibility Leadership Initiative Productivity Social skills	 Make sense of problems and persevere in solving them Reason abstractly and quantitatively Construct viable arguments and critique the reasoning of others Model with mathematics Use appropriate tools strategically Attend to precision Look for and make use of structure Look for and express regularity in repeated reasoning

Unit Resources:		
Textbook	Online Resources	Calculators
Calculus for AP, 2nd Ed, Larson/Battaglia	https://apcentral.collegeboard.org https://sso.cengage.com/cb WebAssign CalcChat.com CalcView.com	TI-84 Plus TI-89 Desmos.com

Students will write:

Students will define and compare/contrast given terms. Students will describe and write about a diagram using mathematical language. Students will relate real-world situations using geometry terminology. Students will also prove postulates and theorems

How can integrals be simplified to be able to use techniques we know

Solutions to complex rational functions through integration

Explain the difference between Disc, Washer, and Shell Methods

Compare Net Change Theorem to the Fundamental Theorem of Calculus

Algebraic and conceptual proofs relating the relationships between NCT and FTC

PART III: TRANSFER OF KNOWLEDGE AND SKILLS

DESCRIBE THE LEARNING EXPERIENCE.

How will students uncover content and build skills?

	4.5 - The Net Change Theorem		
Specific Learning Objective	Warm-Up/Starting Options		Practice & Apply
 Understand and use the Net Change Theorem 	Describe, in words, the fundamental theorem of calculus	Larson Text	Section: 4.5 Pg: 333 - 335

Section number and Title:		
Specific Learning Objective	Warm-Up/Starting Options	Practice & Apply
 How do you determine the volume of a solid using the Shell Method 	Determine the volume of a shape rotated on a given Axis of Rotation (Disc or Washer)	Larson Text Section: 6.3 Pg: 436 - 439

PART IV: EVIDENCE OF LEARNING IDENTIFY THE METHODS BY WHICH STUDENTS WILL DEMONSTRATE THEIR UNDERSTANDING OF CONTENT AND THEIR ABILITY TO APPLY SKILLS.

Assessments		
Summative	Formative	Performance
The following assessments will be used to evaluate student learning, skill acquisition and academic achievement of the Standards of Mathematical Practice and the New Jersey Learning Standards for Mathematics listed under each chapter in the Algebra 1 curriculum/syllabus at the conclusion of an instructional time period. Diagnostic Pre-Test Chapter Tests Projects End-Of –Course Assessment	The effectiveness of the instructional program will be based on numerous activities and strategies including the following: teacher observations, students collaborating with peers, questioning strategies, student record-keeping, quizzes, exit/admit assignments, peer/self-assessments, learning/response logs, discussions and practice presentations.	 The following assessments require students to utilize various strands of mathematics. Projects Practice AP Exam Questions Homework Classwork
List of Accommodations and Modifications Special Education 504 Students At Risk Students ELL Gifted and Talented 		

State Mandates and Resources

- <u>New Jersey Student Learning Standards</u>
- <u>Career Readiness, Life Literacies, and Key Skills</u>
- LGBT and Disabilities Law
- Asian and Pacific Islander

8 **Mathematical Practices**

Practice 1	Practice 2	Practice 3	Practice 4
Implementing Mathematical Processes Determine expressions and values using mathematical procedures and rules.	Connecting Representations	Justification Justify reasoning and solutions.	Communication and Notation 4 Use correct notation, language, and mathematical conventions to communicate results or solutions.
- SKILLS			
1.A Identify the question to be answered or problem to	2.A Identify common underlying structures in	3.A Apply technology to develop claims and	4.A Use precise mathematical language.

1.8 Identify key and relevant information to answer a question or solve a problem (not assessed).

be solved (not assessed).

1.6 Identify an appropriate mathematical rule or procedure based on the classification of a given expression (e.g., Use the chain rule to find the derivative of a composite function).

1.0 Identify an appropriate mathematical rule or procedure based on the relationship between concepts (e.g., rate of change and accumulation) or processes (e.g., differentiation and its inverse process, anti-differentiation) to solve problems.

1.E Apply appropriate mathematical rules or procedures, with and without technology.

Explain how an approximated value relates to the actual value.

problems involving different contextual situations.

2.8 Identify mathematical information from graphical, numerical, analytical, and/or verbal representations.

2.c Identify a re-expression of mathematical information presented in a given representation.

2.D Identify how mathematical characteristics or properties of functions are related in different representations.

2.E Describe the relationships among different representations of functions and their derivatives.

conjectures (not assessed).

3.B Identify an appropriate mathematical definition, theorem, or test to apply.

s.c Confirm whether hypotheses or conditions of a selected definition, theorem, or test have been satisfied.

3.D Apply an appropriate mathematical definition, theorem, or test.

rationales for solutions and conclusions.

of mathematical solutions in context.

are accurate and appropriate.

4.8 Use appropriate units of measure.

4.C Use appropriate mathematical symbols and notation (e.g., Represent a derivative using f'(x), y', and dy).

4.D Use appropriate graphing techniques.

4.E Apply appropriate rounding procedures.

3.E Provide reasons or

3.F Explain the meaning

3.0 Confirm that solutions

Black Horse Pike Regional School District

Where inspiring excellence is our standard, and student achievement is the result.

AP CALCULUS BC 034000

Updated: July 2023

PART I: UNIT RATIONALE

WHY ARE STUDENTS LEARNING THIS CONTENT AND THESE SKILLS?

Unit Title: Marginal Analysis Project

In this unit, students will complete a real-world project that reflects the applications of differential calculus in business. Students will have to research key definitions for Marginal Revenue, Cost, and Profit and how they are calculated through the use of calculus. Students will then need to create and provide a full solution to a real-world problem addressing at least one of the key terms. A verbal presentation will conclude the topic with the support of a Powerpoint summarizing their findings and solutions.

Essential Questions	Enduring Understandings
 1. What is Marginal Revenue? 2. What is Marginal Profit? 3. What is Marginal Cost? 4. How do you use calculus to determine Marginal Revenue, Profit, and/or Cost? 	1. Marginal analysis is utilized as a decision making tool to maximize potential profits for businesses.
Tier 2 Vocabulary High-frequency words used throughout the unit	Tier 3 Vocabulary Discipline-specific words used throughout the unit
1. Derivative4. Cost2. Function5. Profit3. Revenue	1. Marginal

PART II: INSTRUCTIONAL STRATEGIES AND RESOURCES DESCRIBE THE LEARNING TARGETS.

Unit Lea	rning Targets/Goals/Outcomes	
Learning Target (Specific behavioral objectives that describe the skills students will learn)	<u>NJSLS:</u>	Mathematical Practices (see AP table the end of the document):
 Define, Calculate, and Analyze Marginal Profits, Cost, and Revenues for Real-World Problems 	1. HSA.CED.A	1. 1E, 3D, 4B

Interdisciplinary Connections		
Real-world problem-solving examples	Learning Target	NJSLS
Section: 1.2Page: 74Description: Cost analysis functions for paddleboard company	Define, Calculate, and Analyze Marginal Profits, Cost, and Revenues for Real-World Problems	CLKS 9.1

21st-Century Skills	Mathematical Practices
Critical thinking Creativity Collaboration Communication Information literacy Technology literacy Media literacy Flexibility Leadership Initiative Productivity Social skills	 Make sense of problems and persevere in solving them Reason abstractly and quantitatively Construct viable arguments and critique the reasoning of others Model with mathematics Use appropriate tools strategically Attend to precision Look for and make use of structure Look for and express regularity in repeated reasoning

Unit Resources:				
Textbook	Online Resources	Calculators		
Calculus for AP, 2nd Ed, Larson/Battaglia	https://apcentral.collegeboard.org https://sso.cengage.com/cb WebAssign CalcChat.com CalcView.com	TI-84 Plus TI-89 Desmos.com		

Students will write:

Students will define and compare/contrast given terms. Students will describe and write about a diagram using mathematical language. Students will relate real-world situations using geometry terminology. Students will also prove postulates and theorems

Definitions of Marginal Revenue, Cost, and Profit

Create a virtual presentation of key terms and solutions to real world problems

Justifications as to why corporations would want to utilize the interpretations of solutions

Utilize proper differentiation notation within solutions

PART III: TRANSFER OF KNOWLEDGE AND SKILLS

DESCRIBE THE LEARNING EXPERIENCE.

How will students uncover content and build skills?

Section number and Title:						
Specific Learning Objective	Warm-Up/Starting Options	Practice & Apply				
 Define, Calculate, and Analyze Marginal Profits, Cost, and Revenues for Real-World Problem 	Derive the given function	Larson Text	Section: 2.5	Pg: 180-182		

PART IV: EVIDENCE OF LEARNING IDENTIFY THE METHODS BY WHICH STUDENTS WILL DEMONSTRATE THEIR UNDERSTANDING OF CONTENT AND THEIR ABILITY TO APPLY SKILLS.

Assessments						
Summative	Formative	Performance				
The following assessments will be used to evaluate student learning, skill acquisition and academic achievement of the Standards of Mathematical Practice and the New Jersey Learning Standards for Mathematics listed under each chapter in the Algebra 1 curriculum/syllabus at the conclusion of an instructional time period. Diagnostic Pre-Test Chapter Tests Projects End-Of –Course Assessment	The effectiveness of the instructional program will be based on numerous activities and strategies including the following: teacher observations, students collaborating with peers, questioning strategies, student record-keeping, quizzes, exit/admit assignments, peer/self-assessments, learning/response logs, discussions and practice presentations.	 The following assessments require students to utilize various strands of mathematics. Projects Practice AP Exam Questions Homework Classwork 				
List of Accommodations and Modifications Special Education 504 Students At Risk Students ELL Gifted and Talented 						

State Mandates and Resources

- <u>New Jersey Student Learning Standards</u>
- <u>Career Readiness, Life Literacies, and Key Skills</u>
- LGBT and Disabilities Law
- Asian and Pacific Islander

8 **Mathematical Practices**

Practice 1	Practice 2	Practice 3	Practice 4
Implementing Mathematical Processes Determine expressions and values using mathematical procedures and rules.	Connecting Representations	Justification Justify reasoning and solutions.	Communication and Notation 4 Use correct notation, language, and mathematical conventions to communicate results or solutions.
- SKILLS			
1.A Identify the question to be answered or problem to	2.A Identify common underlying structures in	3.A Apply technology to develop claims and	4.A Use precise mathematical language.

1.8 Identify key and relevant information to answer a question or solve a problem (not assessed).

be solved (not assessed).

1.6 Identify an appropriate mathematical rule or procedure based on the classification of a given expression (e.g., Use the chain rule to find the derivative of a composite function).

1.0 Identify an appropriate mathematical rule or procedure based on the relationship between concepts (e.g., rate of change and accumulation) or processes (e.g., differentiation and its inverse process, anti-differentiation) to solve problems.

1.E Apply appropriate mathematical rules or procedures, with and without technology.

Explain how an approximated value relates to the actual value.

problems involving different contextual situations.

2.8 Identify mathematical information from graphical, numerical, analytical, and/or verbal representations.

2.c Identify a re-expression of mathematical information presented in a given representation.

2.D Identify how mathematical characteristics or properties of functions are related in different representations.

2.E Describe the relationships among different representations of functions and their derivatives.

conjectures (not assessed).

3.B Identify an appropriate mathematical definition, theorem, or test to apply.

s.c Confirm whether hypotheses or conditions of a selected definition, theorem, or test have been satisfied.

3.D Apply an appropriate mathematical definition, theorem, or test.

rationales for solutions and conclusions.

of mathematical solutions in context.

are accurate and appropriate.

4.8 Use appropriate units of measure.

4.C Use appropriate mathematical symbols and notation (e.g., Represent a derivative using f'(x), y', and dy).

4.D Use appropriate graphing techniques.

4.E Apply appropriate rounding procedures.

3.E Provide reasons or

3.F Explain the meaning

3.0 Confirm that solutions